Soon Kwang Hong

Learn More
Homeobox genes encode a large family of homeodomain proteins that play a key role in the pattern formation of animal embryos. By analogy, homeobox genes in plants are thought to mediate important processes in their embryogenesis, but there is very little evidence to support this notion. Here we described the temporal and spatial expression patterns of a(More)
The mechanisms by which stress and anti-depressants exert opposite effects on the course of clinical depression are not known. However, potential candidates might include neurotrophic factors that regulate the development, plasticity, and survival of neurons. To explore this hypothesis, we examined the effects of stress and antidepressants on neurotrophin(More)
It is unclear how embryo size is genetically regulated in plants. Since cereals have a large persisting endosperm, it is expected that embryo size is affected by endosperm development. Nine single recessive mutations, four reduced embryo mutations representing three loci, REDUCED EMBRYO1, REDUCED EMBRYO2 and REDUCED EMBRYO3, four giant embryo mutations(More)
The regulatory mechanism of shoot apical meristem (SAM) initiation is an important subject in developmental plant biology. We characterized nine recessive mutations derived from four independent loci (SHL1-SHL4) causing the deletion of the SAM. Radicles were produced in these mutant embryos. Concomitant with the loss of SAM, two embryo-specific organs,(More)
The skc gene encoding streptokinase (SK), with a molecular weight of approximately 47.4 kDa, was cloned from Streptococcus eouisimilis ATCC9542 and heterologously overexpressed in Streptomyces lividans TK24 and E. coli using various strong promoters. When the sprT promoter was used in the S. lividans TK24 host, the SK protein corresponding to 47.4 kDa was(More)
The mitogen-activated protein kinase kinase kinase 3 (MEKK3) is a member of the MAP kinase family whose cellular activity is elevated in response to growth factors, oxidative stress, and hyperosmolar conditions. MEKK3 regulates MKK3 and MKK5/6/7. MEKK3 is involved distinctively in the signal pathway for blocking cell proliferation and cell cycle(More)
  • 1