Soo-Hyun Yang

Learn More
The Ataxia Telangiectasia-Mutated (ATM) protein kinase is recruited to sites of double-strand DNA breaks by the Mre11/Rad50/Nbs1 (MRN) complex, which also facilitates ATM monomerization and activation. MRN exists in at least two distinct conformational states, dependent on ATP binding and hydrolysis by the Rad50 protein. Here we use an ATP analog-sensitive(More)
The carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) is known to function in 5' strand resection during homologous recombination, similar to the budding yeast Sae2 protein, but its role in this process is unclear. Here, we characterize recombinant human CtIP and find that it exhibits 5' flap endonuclease activity on branched DNA(More)
The human SSB homologue 1 (hSSB1) has been shown to facilitate homologous recombination and double-strand break signalling in human cells. Here, we compare the DNA-binding properties of the SOSS1 complex, containing SSB1, with Replication Protein A (RPA), the primary single-strand DNA (ssDNA) binding complex in eukaryotes. Ensemble and single-molecule(More)
The Mre11/Rad50/Nbs1 (MRN) complex initiates and coordinates DNA repair and signaling events at double-strand breaks. The interaction between MRN and DNA ends is critical for the recruitment of DNA-processing enzymes, end tethering, and activation of the ATM protein kinase. Here we visualized MRN binding to duplex DNA molecules using single-molecule FRET,(More)
Homologous recombination plays a key role in the repair of double-strand breaks (DSBs), and thereby significantly contributes to cellular tolerance to radiotherapy and some chemotherapy. DSB repair by homologous recombination is initiated by 5' to 3' strand resection (DSB resection), with nucleases generating the 3' single-strand DNA (3'ssDNA) at DSB sites.(More)
Exonuclease 1 (Exo1) is a 5'→3' exonuclease and 5'-flap endonuclease that plays a critical role in multiple eukaryotic DNA repair pathways. Exo1 processing at DNA nicks and double-strand breaks creates long stretches of single-stranded DNA, which are rapidly bound by replication protein A (RPA) and other single-stranded DNA binding proteins (SSBs). Here, we(More)
  • 1