Soo-Chen Cheng

Learn More
During spliceosome activation, a large structural rearrangement occurs that involves the release of two small nuclear RNAs, U1 and U4, and the addition of a protein complex associated with Prp19p. We show here that the Prp19p-associated complex is required for stable association of U5 and U6 with the spliceosome after U4 is dissociated. Ultraviolet(More)
Two novel yeast splicing factors required for spliceosome disassembly have been identified. Ntr1 and Ntr2 (NineTeen complex-Related proteins) were identified for their weak association with components of the Prp19-associated complex. Unlike other Prp19-associated components, these two proteins were primarily associated with the intron-containing spliceosome(More)
The Saccharomyces cerevisiae splicing factors Ntr1 (also known as Spp382) and Ntr2 form a stable complex and can further associate with DExD/H-box RNA helicase Prp43 to form a functional complex, termed the NTR complex, which catalyzes spliceosome disassembly. We show that Prp43 interacts with Ntr1-Ntr2 in a dynamic manner. The Ntr1-Ntr2 complex can also(More)
The Prp19p-associated complex is essential for the yeast pre-mRNA splicing reaction. The complex consists of at least eight protein components, but is not tightly associated with spliceosomal snRNAs. By a combination of genetic and biochemical methods we previously identified four components of this complex, Ntc25p, Ntc85p, Ntc30p and Ntc20p, all of them(More)
Cwc25 has previously been identified to associate with pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex, or NTC) involved in spliceosome activation. We show here that Cwc25 is neither tightly associated with NTC nor required for spliceosome activation but is required for the first catalytic reaction. The(More)
The Prp19-associated complex (NTC) is essential for pre-mRNA splicing and is associated with the spliceosome during spliceosome activation. NTC is required for specifying interactions of U5 and U6 with pre-mRNA to stabilize their association with the spliceosome after dissociation of U4. Here, we show that a novel splicing factor, Yju2, is associated with(More)
Cwc22 was previously identified to associate with the pre-mRNA splicing factor Cef1/Ntc85, a component of the Prp19-associated complex (nineteen complex [NTC]) involved in spliceosome activation. We show here that Cwc22 is required for pre-mRNA splicing both in vivo and in vitro but is neither tightly associated with the NTC nor required for spliceosome(More)
The assembly of the spliceosome involves dynamic rearrangements of interactions between snRNAs, protein components, and the pre-mRNA substrate. DExD/H-box ATPases are required to mediate structural changes of the spliceosome, utilizing the energy of ATP hydrolysis. Two DExD/H-box ATPases are required for the catalytic steps of the splicing pathway, Prp2 for(More)
Nuclear pre-messenger RNA (pre-mRNA) splicing is an essential processing step for the production of mature mRNAs from most eukaryotic genes. Splicing is catalyzed by a large ribonucleoprotein complex, the spliceosome, which is composed of five small nuclear RNAs and more than 100 protein factors. Despite the complexity of the spliceosome, the chemistry of(More)
The DEAH-box ATPase Prp43 is required for disassembly of the spliceosome after the completion of splicing or after the discard of the spliceosome due to a splicing defect. Prp43 associates with Ntr1 and Ntr2 to form the NTR complex and is recruited to the spliceosome via the interaction of Ntr2 and U5 component Brr2. Ntr2 alone can bind to U5 and to the(More)