Learn More
Our objective was to test the hypothesis that fetal urine contains a substance(s) that regulates amniotic fluid volume by altering the rate of intramembranous absorption of amniotic fluid. In late gestation ovine fetuses, amniotic fluid volumes, urine, and lung liquid production rates, swallowed volumes and intramembranous volume and solute absorption rates(More)
The role of cortisol in regulating cardiac myocyte growth in the near-term fetal sheep is unknown. We hypothesized that cortisol would suppress cardiomyocyte proliferation and stimulate cardiomyocyte binucleation and enlargement, signs of terminal differentiation. Cardiomyocyte dimensions and percent binucleation were determined in isolated cardiac myocytes(More)
The generation of new myocytes is an essential process of in utero heart growth. Most, or all, cardiac myocytes lose their capacity for proliferation during the perinatal period through the process of terminal differentiation. An increasing number of studies focus on how experimental interventions affect cardiac myocyte growth in the fetal sheep.(More)
While the fetal heart grows by myocyte enlargement and proliferation, myocytes lose their capacity for proliferation in the perinatal period after terminal differentiation. The relationship between myocyte enlargement, proliferation, and terminal differentiation has not been studied under conditions of combined arterial and venous hypertension, as occurs in(More)
Studies in altricial rodents attribute dramatic changes in perinatal cardiomyocyte growth, maturation, and attrition to stimuli associated with birth. Our purpose was to determine whether birth is a critical trigger controlling perinatal cardiomyocyte growth, maturation and attrition in a precocial large mammal, sheep (Ovis aries). Hearts from 0-61 d(More)
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic(More)
Umbilicoplacental embolization (UPE) in sheep has been used to investigate the effects of placental insufficiency on fetal development. However, its specific effects on the heart have been little studied. The aim of this study was to determine the effects of placental insufficiency, induced by UPE, on cardiomyocyte size, maturation and proliferation.(More)
Six singleton fetal sheep of 118-122 days gestational age were instrumented with flow sensors on the brachiocephalic artery, the postductal aorta, and the common umbilical artery and with arterial and venous intravascular catheters. At 125-131 days of gestation, we started week-long continuous recordings of flows and pressures. After control measures had(More)
Interstitial fluid fluxes are much greater in the fetus than in the adult, and filtration rates are increased over control in most tissues of the anaemic fetus. Increased capillary filtration may lead to cardiac oedema which, in turn, severely impacts cardiac function. Mechanisms that underlie these differences in flux are incompletely understood. One(More)
Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in(More)