Sonnada Math Shivaprasad

Learn More
In this work, polysorbate surfactants with same functional groups but with varying molecular masses (Tween-80, Tween-40 and Tween-20) in different concentrations (0.1% to 20% w/w) were used to study the effect of the length of the surfactant chain on the luminescence of the entrapped TOPO-capped CdSe nanocrystals. Various phospholipids with different(More)
A simple strategy to improve the efficiency of a ZnO-nanorod-based dye-sensitized solar cell (DSSC) by use of Au-encapsulated carbon dots (Au@C-dots) in the photoanode is presented. The localized surface plasmonic resonance of Au in the 500-550 nm range coupled with the ability of C-dots to undergo charge separation increase the energy-harvesting efficiency(More)
The ability of a catalyst to accept or donate charge is the key to the process of catalytic reaction. However, the determination of the catalytic nature of a specimen as yet remains a great challenge. Here we report an effective yet simple method for this purpose based on the tight binding theory considerations and XPS monitoring of the evolution of valence(More)
We demonstrate here a novel high surface area GaN nanowall network substrate with plasmonic Ag nanodroplets, that can be employed as a highly sensitive, reproducible, and charge independent SERS substrate. The uniformity of the size and distribution of the Ag droplets and the absence of linker ligands result in large near-field intensity, while the GaN(More)
The performance of perovskite solar cells is strongly influenced by the composition and microstructure of the perovskite. A recent approach to improve the power conversion efficiencies utilized mixed-halide perovskites, but the halide ions and their roles were not directly studied. Unraveling their precise location in the perovskite layer is of paramount(More)
Towards increasing the stability of perovskite solar cells, the addition of Cs+ is found to be a rational approach. Recently triple cation based perovskite solar cells were found to be more effective in terms of stability and efficiency. Heretofore they were unexplored, so we probed the Cs/MA/FA (cesium/methyl ammonium/formamidinium) cation based(More)
We report here studies on the effect of high pressure on the structural properties of nano-sized Europium sesquioxide (Eu2O3) up to a pressure of about 16.4 GPa. At ambient conditions, the starting sample was found to be predominantly cubic type Eu2O3 or in Eu3+ state with a trace of Eu2+. The presence of Eu2+ state is assumed to be arising due to the(More)
In this work by means of PL, FTIR and XPS techniques, state-of-the-art porous silicon (PS) films with good mechanical and optical properties have been effectively utilized for the biofunctionalization purpose for its possible application in immunosensors. The functionalization of the PS surface has been achieved by silanization process using(More)
Pd NP concentration guided the self-assembly of core-shell Pd@SiO2 nanoparticles (NPs) into microcubes. The Pd NPs were stacked by molten dodecyltrimethylammonium bromide (DTAB) to create the SiO2 envelope. The microcubes demonstrated improved leaching resistance in heterogeneous catalysis over a conventional porous support.
A probe of the core-shell formation and the interfacial properties of monodispersed 30 nm Pb nanoparticles are presented. A direct correlation between the structures of the particle to its chemical states is done, by a careful Ar+ ion depth profiling followed by X-ray Photoelectron Spectroscopy and Atomic Force Microscopy. The study provides a unique(More)