Sonja van Meirvenne

Learn More
BACKGROUND Dendritic cells (DC) are the professional antigen-presenting cells of the immune system, fully equipped to prime naive T cells and thus essential components for cancer immunotherapy. METHODS We tested the influence of several elements (cPPT, trip, WPRE, SIN) on the transduction efficiency of human DC. Human and murine DC were transduced with(More)
The aim of this study was to evaluate the tissue infiltration and phenotypic adhesion profile of 5T2 multiple myeloma (MM) and 5T33 MM cells and to correlate it with that observed in human disease. For each line, 30 mice were intravenously inoculated with myeloma cells and at a clear-cut demonstrable serum paraprotein concentration; mice were sacrificed and(More)
Ex vivo lentivirally transduced dendritic cells (DC) have been described to induce CD8+ and CD4+ T-cell responses against various tumor-associated antigens (TAAs) in vitro and in vivo. We report here that direct administration of ovalbumin (OVA) encoding lentiviral vectors caused in vivo transduction of cells that were found in draining lymph nodes (LNs)(More)
It has been extensively documented that murine dendritic cells loaded with tumor-associated Ag (TAA)-derived peptides or protein can prime Ag-specific CD8+ cytotoxic T cells in vivo and can elicit Ag-specific immunity. Optimal presentation of TAA might be achieved by retroviral transduction of DCs allowing long term and stable expression of the TAA-peptides(More)
The use of tumor antigen-loaded dendritic cells (DC) is one of the most promising approaches to inducing a tumor-specific immune response. We compared electroporation of mRNA to lentiviral transduction for the delivery of tumor antigens to human monocyte-derived and murine bone marrow-derived DC. Both lentiviral transduction and mRNA electroporation induced(More)
Dendritic cells (DC) are the most potent presenters of alloantigens and therefore are responsible for the induction of allograft rejection. Genetic modifications of DC allowing the expression of a tolerogenic molecule may render them immunosuppressive. We transduced bone marrow-derived DC with recombinant MFG retrovirus encoding either viral interleukin(More)
As demonstrated in several preclinical models, bispecific Abs are attractive immunotherapeutic agents for tumor treatment. We have previously reported that a bacterially produced anti-CD3 x antitumor bispecific single chain variable fragment of Ab fragment (BsscFv), which is capable of retargeting CTLs toward BCL1 tumor cells, exhibits antitumor activity in(More)
Recently, human dendritic cells (DCs) pulsed with mRNA encoding a broad range of tumor antigens have proven to be potent activators of a primary anti-tumor-specific T-cell response in vitro. The aim of this study was to improve the mRNA pulsing of murine DC. Compared to a standard lipofection protocol and passive pulsing, electroporation was, in our hands,(More)
Dendritic cells (DCs) genetically engineered to overexpress CD95 (Fas) ligand (CD95L-DC) were proposed as tools to induce peripheral tolerance to alloantigens. Herein, we observed that CD95L-DC obtained after retroviral gene transfer in bone marrow (BM) precursors derived from CD95-deficient (lpr/lpr) mice elicit much stronger allospecific type 1 helper(More)
Until now, studies utilizing mRNA electroporation as a tool for the delivery of tumor antigens to human monocyte-derived dendritic cells (DC) have focused on DC electroporated in an immature state. Immature DC are considered to be specialized in antigen capture and processing, whereas mature DC present antigen and have an increased T-cell stimulatory(More)