Sonja Roehrs

Learn More
Janus kinase 2 (JAK2)V617F-activating mutations (JAK2mu) occur in myeloproliferative disorders (MPDs) and myelodysplastic syndromes (MDSs). Cell lines MB-02, MUTZ-8, SET-2 and UKE-1 carry JAK2V617F and derive from patients with MPD/MDS histories. Challenging the consensus that expression of JAK2V617F is the sole precondition for cytokine independence in(More)
The canonical Wnt pathway controls cell differentiation, proliferation and apoptosis by regulating the expression of a high number of target genes. The first target gene of the Wnt pathway was discovered nearly 20 years ago, when analysing gene expression patterns in the Drosophila embryo. Since the year 2002 entire transcriptomes have been screened by(More)
The Wnt pathway controls biological processes via the regulation of target gene expression. The expression of direct Wnt target genes, e.g. cyclin D1 and MYC, is activated by the transcription factor TCF, which binds to specific sequence motifs in the promoter. Indirect target genes are regulated via transcription regulators, which are targets of the Wnt(More)
Multidrug resistance (MDR) is a major limiting factor in the development and application of drug candidates. MDR caused by MRP-1 is known to be modulated by the nonsteroidal antiinflammatory drug indomethacin. We have synthesized and biologically evaluated a library of indomethacin analogues. The indomethacin-derived compound library was synthesized(More)
The canonical Wnt pathway regulates several biological processes including development, cell growth and proliferation via consecutive gene regulation. A high number of target genes of the Wnt pathway has been identified, but the chronological order of target gene expression is still elusive. This order is supposed to be crucial for the controlled course of(More)
BACKGROUND Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a(More)
Lipocalin 24p3 plays a direct role in iron transport and regulates the levels of important proteins of the iron metabolism. Iron-loaded 24p3 binds to its specific receptor (24p3R) on the cell surface. Upon binding to its receptor, 24p3 is internalized into the cell, where it releases its bound iron. Iron-free 24p3 can withdraw iron from inside the cell to(More)
  • 1