Learn More
The local field potential (LFP) reflects activity of many neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent of the region generating the LFP. Here, we use a detailed(More)
It has been proposed that cortical neurons organize dynamically into functional groups (cell assemblies) by the temporal structure of their joint spiking activity. Here, we describe a novel method to detect conspicuous patterns of coincident joint spike activity among simultaneously recorded single neurons. The statistical significance of these unitary(More)
When inspecting visual scenes, primates perform on average four saccadic eye movements per second, which implies that scene segmentation, feature binding, and identification of image components is accomplished in <200 ms. Thus individual neurons can contribute only a small number of discharges for these complex computations, suggesting that information is(More)
We propose a formal framework for the description of interactions among groups of neurons. This framework is not restricted to the common case of pair interactions, but also incorporates higher-order interactions, which cannot be reduced to lower-order ones. We derive quantitative measures to detect the presence of such interactions in experimental data, by(More)
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this(More)
Stationary spiking of single neurons is often modelled by a renewal point process. Here, we tested the underlying model assumption that the inter-spike intervals are mutually independent by analyzing stationary spike train recordings from individual rat neocortical neurons in vivo and in vitro. All neurons exhibited moderate (in vivo) or weak (in vitro)(More)
The mechanisms underlying neuronal coding and, in particular, the role of temporal spike coordination are hotly debated. However, this debate is often confounded by an implicit discussion about the use of appropriate analysis methods. To avoid incorrect interpretation of data, the analysis of simultaneous spike trains for precise spike correlation needs to(More)
Recent developments in electrophysiological and optical recording techniques enable the simultaneous observation of large numbers of neurons. A meaningful interpretation of the resulting multivariate data, however, presents a serious challenge. In particular, the estimation of higher-order correlations that characterize the cooperative dynamics of groups of(More)
In order to detect members of a functional group (cell assembly) in simultaneously recorded neuronal spiking activity, we adopted the widely used operational definition that membership in a common assembly is expressed in near-simultaneous spike activity. Unitary event analysis, a statistical method to detect the significant occurrence of coincident spiking(More)