Sonit Kumar Gogoi

Learn More
Nanoscale materials are presently gaining much importance for biological applications especially in the field of medicine. The large numbers of nanomaterial based products that are currently being developed - with projected applications in medicine - have inspired a growing interest in exploring their impact on cellular gene expression. The present study(More)
The impact of manufactured nanomaterials on human health and the environment is a major concern for commercial use of nanotechnology based products. A judicious choice of selective usage, lower nanomaterial concentration and use in combination with conventional therapeutic materials may provide the best solution. For example, silver nanoparticles (Ag NPs)(More)
Recombinant Escherichia coli (E. coli) bacteria expressing green fluorescent protein (GFP) was used as a model system to investigate the antimicrobial activities of Ag nanoparticles (NPs). A convenient in situ method of Ag NP synthesis using sodium borohydride, in the bacterial growth medium, was developed to produce preformed NPs for the study.(More)
In this article, we report a new form of lithography that involves a reaction between a gas and an ion embedded in a polymer film. The principle is based on a combination of top-down and bottom-up approaches in which a transmission electron microscope grid is placed on a poly(vinylpyrrolidone) film containing Cd2+ ions, which is then exposed to H2S gas.(More)
We introduce a new lithographic method for the generation of 2D patterns of composite nanoparticles (NPs) of Ag and Au by taking recourse to combine top-down and bottom-up approaches. Micrometer-scale and submicrometer-scale patterned Ag foils of commercially available compact disks (CDs) and digital versatile disks (DVDs), respectively, were used as(More)
Herein we report the photoinduced electron transfer from Mn2+ -doped ZnS quantum dots (Qdots) to carbon dots (Cdots) in an aqueous dispersion. We also report that the electron transfer was observed for low pH values, at which the oppositely charged nanoparticles (NPs) interacted with each other. Conversely, at higher pH values the NPs were both negatively(More)
  • 1