Sonia Tangaro

Learn More
The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting masses in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration (Medical Applications on a Grid Infrastructure Connection). A(More)
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists(More)
Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image(More)
OBJECTIVES The next generation of high energy physics (HEP) experiments requires a GRID approach to a distributed computing system: the key concept is the Virtual ORGANISATION (VO), a group of distributed users with a common goal and the will to share their resources. METHODS A similar approach, applied to a group of hospitals that joined the GPCALMA(More)
The hippocampus is an important structural biomarker for Alzheimer's disease (AD) and has a primary role in the pathogenesis of other neurological and psychiatric diseases. This study presents a fully automated pattern recognition system for an accurate and reproducible segmentation of the hippocampus in structural Magnetic Resonance Imaging (MRI). The(More)
The implementation of a database of digitised mammograms is discussed. The digitised images were collected beginning in 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals as a first step in developing and implementing a computer-aided detection (CAD) system. All 3,369 mammograms were collected from 967 patients(More)
A new algorithm for massive lesion detection in mammography is presented. The algorithm consists in three main steps: 1) reduction of the dimension of the image to be processed through the identification of regions of interest (roi) as candidates for massive lesions; 2) characterization of the RoI by means of suitable feature extraction; 3) pattern(More)
The use of an automatic system for the analysis of mammographic images has proven to be very useful to radiologists in the investigation of breast cancer, especially in the framework of mammographic-screening programs. A breast neoplasia is often marked by the presence of microcalcification clusters and massive lesions in the mammogram: hence the need for(More)
The GPCALMA (Grid Platform for Computer Assisted Library for MAmmography) collaboration involves several departments of physics, INFN (National Institute of Nuclear Physics) sections, and italian hospitals. The aim of this collaboration is developing a tool that can help radiologists in early detection of breast cancer. GPCALMA has built a large distributed(More)
A new active contour model (ACM) algorithm for the detection of the contour of bi-dimensional regions is presented. The algorithm is based on the simulation of an elastic band glued to the contour of the region under analysis. As a result a local convex hull is obtained, where the radius of the concave regions included by the elastic band is defined by(More)