Sonia Pérez-Yagüe

Learn More
BACKGROUND & AIM Uptake, cytotoxicity and interaction of improved superparamagnetic iron oxide nanoparticles were studied in cells, tissues and organs after single and multiple exposures. MATERIAL & METHOD We prepared dimercaptosuccinic acid-coated iron oxide nanoparticles by thermal decomposition in organic medium, resulting in aqueous suspensions with a(More)
Atherosclerosis is an inflammatory disease regulated by infiltrating monocytes and T cells, among other cell types. Macrophage recruitment to atherosclerotic lesions is controlled by monocyte infiltration into plaques. Once in the lesion, macrophage proliferation in situ, apoptosis, and differentiation to an inflammatory (M1) or anti-inflammatory phenotype(More)
As radio- and chemotherapy-based cancer treatments affect both tumors and healthy tissue, cancer immunotherapy attempts to specifically enhance the natural immune response to tumor cells. In mouse models of cancer, we tested uniform dimercaptosuccinic acid (DMSA)-coated monodisperse magnetic nanoparticles as a delivery system for the anti-tumorigenic(More)
Although iron oxide magnetic nanoparticles (MNP) have been proposed for numerous biomedical applications, little is known about their biotransformation and long-term toxicity in the body. Dimercaptosuccinic acid (DMSA)-coated magnetic nanoparticles have been proven efficient for in vivo drug delivery, but these results must nonetheless be sustained by(More)
NK cells are a major component of the immune system, and alterations in their activity are correlated with various autoimmune diseases. In the present work, we observed an increased expression of the NKG2D ligand MICA in SLE patients' kidneys but not healthy subjects. We also show glomerulus-specific expression of the NKG2D ligands Rae-1 and Mult-1 in(More)
Polyethylenimine (PEI) is widely used as transfection agent in preclinical studies, both in vitro and in vivo. Due to their unique chemical and physical properties, SPIONs (superparamagnetic iron oxide nanoparticles) have been thoroughly studied as nanocarriers. PEI appears to activate different immune cells to an inflammatory response (M1/TH1), whereas the(More)
Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been(More)
UNLABELLED Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise as contrast agents and nanocarriers for drug delivery. Their impact on M2-polarised macrophages has nonetheless not been well studied. Here we explored the effects of SPIONs coated with dimercaptosuccinic acid, aminopropyl silane or aminodextran in two M2 macrophage models(More)
To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and(More)
The role of p110d PI3K in lymphoid cells has been studied extensively, showing its importance in immune cell differentiation, activation and development. Altered T cell localization in p110d-deficient mouse spleen suggested a role for p110d in non-hematopoietic stromal cells, which maintain hematopoietic cell segregation. We tested this hypothesis using(More)