Learn More
Understanding the mechanisms by which ribozymes catalyse chemical reactions requires a detailed knowledge of their structure. The secondary structure of the group I introns has been confirmed by comparison of over 70 published sequences, by chemical protection studies, and by genetic experiments involving compensatory mutations. Phylogenetic data can also(More)
Derivatives of the sunY self-splicing intron efficiently catalyzed the synthesis of complementary strand RNA by template-directed assembly of oligonucleotides. These ribozymes were separated into three short RNA fragments that formed active catalytic complexes. One of the multisubunit sunY derivatives catalyzed the synthesis of a strand of RNA complementary(More)
Alternative splicing is a key mechanism regulating gene expression, and it is often used to produce antagonistic activities particularly in apoptotic genes. Heterogeneous nuclear ribonucleoparticle (hnRNP) proteins form a family of RNA-binding proteins that coat nascent pre-mRNAs. Many but not all major hnRNP proteins have been shown to participate in(More)
Small nucleolar RNAs (snoRNAs) are among the first discovered and most extensively studied group of small non-coding RNA. However, most studies focused on a small subset of snoRNAs that guide the modification of ribosomal RNA. In this study, we annotated the expression pattern of all box C/D snoRNAs in normal and cancer cell lines independent of their(More)
  • 1