Learn More
Conductive metal nanowire is a promising current collector for the Si-based anode material in high-rate lithium-ion batteries. However, to harness this remarkable potential for high power density energy storage, one has to address the interfacial potential barrier that hinders the electron injection from the metal side. Herein, we present that, solely by(More)
We present a method to introduce a large biaxial tensile strain in an ultra-thin germanium-on-insulator (GOI) using selective oxidation of SiGe epilayer on silicon-on-insulator (SOI) substrate. A circular patterned Si0.81Ge0.19 mesa on SOI substrate with the sidewall protected by Si3N4 or SiO2 is selectively oxidized to generate local 12 nm GOI with high(More)
High-quality Ge epilayer on Si(1 0 0) substrate with an inserted low-temperature Ge seed layer and a thin Si 0.77 Ge 0.23 layer was grown by ultrahigh vacuum chemical vapor deposition. The epitaxial Ge layer with surface root-mean-square roughness of 0.7 nm and threading dislocation density of 5 Â 10 5 cm À2 was obtained. The influence of low temperature Ge(More)
The tunneling effect and interface state in the p-Ge/GeO2p-Si structure of a wafer-bonding Ge/Si avalanche photodiode (APD) are investigated. It is found that the thin interfacial GeO2 layer (1-2 nm) formed by the hydrophilic reaction at the wafer-bonding interface significantly affects the performance of the Ge/Si APD. With the increase of the GeO2(More)
Direct band electroluminescence (EL) from tensile-strained Si0.13Ge0.87/Ge multiple quantum wells (MQWs) on a Ge virtual substrate (VS) at room temperature is reported herein. Due to the competitive result of quantum confinement Stark effect and bandgap narrowing induced by tensile strain in Ge wells, electroluminescence from Γ1-HH1 transition in 12-nm Ge(More)
We directly demonstrate quantum-confined direct band transitions in the tensile strained Ge/SiGe multiple quantum wells grown on silicon substrates by room temperature photoluminescence. The tensile strained Ge/SiGe multiple quantum wells with various thicknesses of Ge well layers are grown on silicon substrates with a low temperature Ge buffer layer by(More)
We describe the fabrication of nanostructures on SiGe film by KrF excimer laser with nanosecond pulse width, and find a more direct and clear relationship between the laser irradiation conditions and the nanoscale structures. Perfect annular nanostructures around scattering points on the SiGe film are firstly obtained after the irradiation of a KrF excimer(More)
  • 1