Song Guo Zheng

Learn More
IL-2 and TGF-beta both have important roles in the induction and maintenance of immunologic tolerance, but whether these cytokines act separately or together to achieve this effect is poorly understood. Although others have reported that IL-2 can directly enhance forkhead box protein P3 (Foxp3) transcription factor expression by natural CD4(+)CD25(+)(More)
Foxp3(+) CD4(+) CD25(+) regulatory cell (Treg) subsets that maintain immunologic homeostasis have been considered to be a homogeneous population of naturally occurring, thymus-derived CD4(+)CD25(+) cells (nTregs). However, similar Foxp3+ Tregs can be induced from CD25(-) precursors in vivo, and ex vivo with interleukin 2 (IL-2) and transforming growth(More)
CD4+Foxp3+ Treg consist of two indistinguishable subsets induced in either the thymus or the periphery. In addition to their suppressive activities, IL-6 can convert natural Treg to pro-inflammatory IL-17-producing cells, but those induced with IL-2 and TGF-beta remain Treg. Unlike mouse CD4+CD25(-) cells, which rapidly become polyclonal Foxp3+CD25+ Treg(More)
Previously we reported that TGF-beta has an important role in the generation and expansion of human "professional" CD4(+)CD25(+) regulatory T cells in the periphery that have a cytokine-independent mechanism of action. In this study we used low-dose staphylococcal enterotoxin to induce T cell-dependent Ab production. We report that TGF-beta induces(More)
Thymus-derived, natural CD4(+)CD25(+) regulatory T cells can educate peripheral CD4(+)CD25(-) cells to develop suppressive activity by poorly understood mechanisms. TGF-beta has IL-2-dependent costimulatory effects on alloactivated naive, human CD4(+) T cells and induces them ex vivo to become potent contact-dependent, cytokine-independent suppressor cells.(More)
TGF-beta has pleiotropic effects on T cell differentiation that are determined by other cytokines in the local environment. Whereas IL-2 and TGF-beta induce naive T cells to become forkhead/winged helix transcription factor (Foxp3) positive regulatory cells (iTregs), the combination of IL-6 and TGF-beta induces IL-17-producing cells (Th17). Moreover, IL-6(More)
Recently, considerable attention has been focused on thymus-derived CD4+ regulatory T cells that constitutively express CD25 and have a contact-dependent, cytokine-independent mechanism in vitro. However, peripheral CD4+ and CD8+ T cells can also be induced to become regulatory T cells. Here we review our studies using the combination of IL-2 and(More)
It has been well recognized that a deficit of numbers and function of CD4+CD25+Foxp3+ cells (Treg) is attributed to the development of some autoimmune diseases; however, there are controversial data regarding the suppressive effect of Treg cells on the T cell response in systemic lupus erythematosus (SLE). Additionally, IL-17-producing cells (Th17) have(More)
Whereas TGF-beta is essential for the development of peripherally induced Foxp3(+) regulatory T cells (iTreg cells) and Th17 cells, the intracellular signaling mechanism by which TGF-beta regulates development of both cell subsets is less understood. In this study, we report that neither Smad2 nor Smad3 gene deficiency abrogates TGF-beta-dependent iTreg(More)
BACKGROUND Protective CD4+CD25+ regulatory T cells bearing the Forkhead Foxp3 transcription factor can now be divided into three subsets: Endogenous thymus-derived cells, those induced in the periphery, and another subset induced ex-vivo with pharmacological amounts of IL-2 and TGF-β. Unfortunately, endogenous CD4+CD25+ regulatory T cells are unstable and(More)