Song-Charng Kong

Learn More
A new combustion model is developed and applied to simulate combustion in dual-fuel engines in which the premixed natural gas is ignited by the combustion flame initiated by a diesel spray. The model consists of a diesel auto-ignition model and a flame propagation model. A G-equation model previously developed to simulate SI engine combustion was(More)
This study developed spray-adaptive mesh refinement algorithms with directional sensitivity in an unstructured solver to improve spray simulation for internal combustion engine application. Inadequate spatial resolution is often found to cause inaccuracies in spray simulation using the Lagrangian–Eulerian approach due to the over-estimated diffusion and(More)
Detailed chemistry was used with engine CFD code for HCCI engine combustion modeling in order to achieve a more accurate analysis. The present study improved the computational efficiency by using reduced mechanisms and parallel computing schemes. In the reduced mechanism, the number of species and reactions were reduced using a systematic approach by the(More)
The accurate prediction of fuel sprays is critical to engine combustion and emissions simulations. A fine computational mesh is often required to better resolve fuel spray dynamics and vaporization. However, computations with a fine mesh require extensive computer time. This study developed a methodology that uses a locally refined mesh in the spray region.(More)
One of the most critical elements in diesel engine design is the selection and matching of the fuel injection system. The injection largely controls the combustion process, and with it also a wide range of related issues, such as: fuel efficiency, emissions, startability, load acceptance (acceleration) and combustion noise. Simulation has been a valuable(More)
.............................................................................................................. vii CHAPTER 1 GENERAL INTRODUCTION ....................................................... 1 Biofuels ......................................................................................................... 1 Bioenergy Assessment(More)
............................................................................................................................. xi CHAPTER 1: INTRODUCTION ................................................................................................ 1 1.1 Motivation(More)
The merging of unstable liquid jets, approaching with high momentum, results in atomization and liquid mixing within a rapidly deforming impingement zone. The complex geometry and high index-of-refraction gradients that occur near the point of impingement present a particularly difficult environment for optical interrogation. X-ray based diagnostics are(More)
A detailed chemistry-based CFD model was developed to simulate the diesel spray combustion and emission process. A reaction mechanism of n-heptane is coupled with a reduced NOx mechanism to simulate diesel fuel oxidation and NOx formation. The soot emission process is simulated by a phenomenological soot model that uses a competing formation and oxidation(More)