Somnath Tagore

Learn More
In-silico metabolic engineering is a very useful branch of systems biology for modeling, analysis and prediction of various outcomes of metabolic pathways. It can also be used for detecting interactions and dynamics within a network. Various protocols have been proposed for modeling a pathway. But most of these protocols have various disadvantages and(More)
Phylogenomics is the analysis of genomes of a group of closely related species. Almost all functional prediction methods rely on the identification, characterisation and quantification of sequence similarity between the gene of interest and genes for which functional information is available. This is the new evolved branch that is developed from the ongoing(More)
Pathway analysis is one of the most interesting aspects of Systems Biology. Modeling biological pathways is interesting as well as difficult to optimize. Various modeling problems of diseases can be successfully analyzed using this simulation approach. Graphical probabilistic approaches are one of the unique methodologies that are used for designing and(More)
BACKGROUND A complex network of biochemical reactions present in an organism generates various biological moieties necessary for its survival. It is seen that biological systems are robust to genetic and environmental changes at all levels of organization. Functions of various organisms are sustained against mutational changes by using alternative pathways.(More)
Disease Systems Biology is an area of life sciences, which is not very well understood to date. Analyzing infections and their spread in healthy metabolite networks can be one of the focussed areas in this regard. We have proposed a theory based on the classical forest fire model for analyzing the path of infection spread in healthy metabolic pathways. The(More)
Cellunomics envisions the new branch of cell, which integrates genomics and proteomics with a new knowledge base built from temporal and spatial data on the chemical and molecular interrelationships of cellular components, i.e., cellome. Cellunomics helps in finding cell-specific protein and protein-protein interaction using cell-specific mRNA and protein(More)
BACKGROUND Studying biochemical pathway evolution for diseases is a flourishing area of Systems Biology. Here, we study Type 1 Diabetes Mellitus (T1D), focusing on growth of glutamate, β-alanine, taurine and hypotaurine, and butanoate metabolisms involved in onset of GAD and INS genes in Homo sapiens with comparative analysis in non-obese diabetic Mus(More)
Discovery of chimeric RNAs, which are produced by chromosomal translocations as well as the joining of exons from different genes by trans-splicing, has added a new level of complexity to our study and understanding of the transcriptome. The enhanced ChiTaRS-3.1 database ( is designed to make widely accessible a wealth of mined(More)
  • 1