Somdeb Bosedasgupta

Learn More
In the post-genomic perspective, the quest of programmed cell death (PCD) mechanisms in kinetoplastid parasites lies in the identification and characterization of cell death executer proteins. Here, we show that baicalein (BLN), a potent topoisomerase IB inhibitor, generates an oxidative stress in the parasites leading to altered physiological and(More)
Mitochondria are the principal site for the generation of cellular ATP by oxidative phosphorylation. F0F1-ATP synthase, a complex V of the electron transport chain, is an important constituent of mitochondria-dependent signaling pathways involved in apoptosis. In the present study, we have shown for the first time that 3,3'-diindolylmethane (DIM), a DNA(More)
ATP-binding cassette (ABC) transporters constitute the biggest family of membrane proteins involved in drug resistance and other biological activities. Resistance of leishmanial parasites to therapeutic drugs continues to escalate in developing countries and in many instances it is due to overexpressed ABC efflux pumps. Progressively adapted camptothecin(More)
Kinetoplastid topoisomerase IB is an unusual bisubunit enzyme where reconstitution of the large (LdTOPIL or L) and small (LdTOPIS or S) subunits shows functional activity. It is yet to be deciphered whether one subunit or both navigate the heterodimer to its cellular DNA targets. Tethering a specific DNA-binding protein to topoisomerase I alters its site(More)
Following an infectious challenge, macrophages have to be activated in order to allow efficient clearance of infectious pathogens, but how macrophage activation is coupled to increased clearance remains largely unknown. We here describe that inflammatory stimuli induced the reprogramming of the macrophage endocytic machinery from receptor-mediated(More)
Mycobacterium tuberculosis has evolved to withstand one of the most inhospitable cells within the human body, namely the macrophage, a cell that is normally geared toward the destruction of any invading microbe. How M. tuberculosis achieves this is still incompletely understood; however, a number of mechanisms are now known that provide advantages to M.(More)
Cognitive and behavioral disorders are thought to be a result of neuronal dysfunction, but the underlying molecular defects remain largely unknown. An important signaling pathway involved in the regulation of neuronal function is the cyclic AMP/Protein kinase A pathway. We here show an essential role for coronin 1, which is encoded in a genomic region(More)
The unusual, heterodimeric topoisomerase IB of Leishmania shows functional activity upon reconstitution of the DNA-binding large subunit (LdTOPIL; or L) and the catalytic small subunit (LdTOPIS; or S). In the present study, we generated N- and C-terminal-truncated deletion constructs of either subunit and identified proteins LdTOPIL(39-456) (lacking amino(More)
3,3'-Diindolylmethane (DIM), a novel poison targeting Leishmania donovani topoisomerase I (LdTOP1LS), induces programmed cell death in Leishmania parasites. The development of resistant parasites by adaptation with increasing concentrations of DIM generates random mutations in LdTOP1LS. Single-nucleotide mutations result in the amino acid substitutions(More)