Learn More
Face recognition performance degrades considerably when the input images are of Low Resolution (LR), as is often the case for images taken by surveillance cameras or from a large distance. In this paper, we propose a novel approach for matching low-resolution probe images with higher resolution gallery images, which are often available during enrollment,(More)
We present a nonstationary stochastic filtering framework for the task of albedo estimation from a single image. There are several approaches in the literature for albedo estimation, but few include the errors in estimates of surface normals and light source direction to improve the albedo estimate. The proposed approach effectively utilizes the error(More)
Plastic surgery procedures can significantly alter facial appearance, thereby posing a serious challenge even to the state-of-the-art face matching algorithms. In this paper, we propose a novel approach to address the challenges involved in automatic matching of faces across plastic surgery variations. In the proposed formulation, part-wise facial(More)
Face recognition performance degrades considerably when the input images are of poor resolution as is often the case for images taken by surveillance cameras or from a large distance. In this paper, we propose a novel approach for the recognition of low resolution images using multidimensional scaling. From a resolution point of view, the scenario yielding(More)
We present a stochastic filtering approach to perform albedo estimation from a single non-frontal face image. Albedo estimation has far reaching applications in various computer vision tasks like illumination-insensitive matching, shape recovery, etc. We extend the formulation proposed in [3] that assumes face in known pose and present an algorithm that can(More)
Most shape matching methods are either fast but too simplistic to give the desired performance or promising as far as performance is concerned but computationally demanding. In this paper, we present a very simple and efficient approach that not only performs almost as good as many state-of-the-art techniques but also scales up to large databases. In the(More)
Many shape matching methods are either fast but too simplistic to give the desired performance or promising as far as performance is concerned but computationally demanding. In this paper, we present a very simple and efficient approach that not only performs almost as good as many state-of-the-art techniques but also scales up to large databases. In the(More)
Facial aging, a new dimension that has recently been added to the problem of face recognition, poses interesting theoretical and practical challenges to the research community. The problem which originally generated interest in the psychophysics and human perception community has recently found enhanced interest in the computer vision community. How do(More)
Face images captured by surveillance cameras usually have poor resolution in addition to uncontrolled poses and illumination conditions, all of which adversely affect the performance of face matching algorithms. In this paper, we develop a completely automatic, novel approach for matching surveillance quality facial images to high-resolution images in(More)
Driven by key law enforcement and commercial applications, research on face recognition from video sources has intensified in recent years. The ensuing results have demonstrated that videos possess unique properties that allow both humans and automated systems to perform recognition accurately in difficult viewing conditions. However, significant research(More)