Solomon V. Yap

Learn More
Mesenchymal stem cells (MSCs), the archetypal multipotent progenitor cells derived in cultures of developed organs, are of unknown identity and native distribution. We have prospectively identified perivascular cells, principally pericytes, in multiple human organs including skeletal muscle, pancreas, adipose tissue, and placenta, on CD146, NG2, and(More)
We previously demonstrated that human pericytes, which encircle capillaries and microvessels, give rise in culture to genuine mesenchymal stem cells (MSCs). This raised the question as to whether all MSC are derived from pericytes. Pericytes and other cells defined on differential expression of CD34, CD31, and CD146 were sorted from the stromal vascular(More)
We document anatomic, molecular and developmental relationships between endothelial and myogenic cells within human skeletal muscle. Cells coexpressing myogenic and endothelial cell markers (CD56, CD34, CD144) were identified by immunohistochemistry and flow cytometry. These myoendothelial cells regenerate myofibers in the injured skeletal muscle of severe(More)
Myofibrillogenesis in striated muscles is a highly complex process that depends on the coordinated assembly and integration of a large number of contractile, cytoskeletal, and signaling proteins into regular arrays, the sarcomeres. It is also associated with the stereotypical assembly of the sarcoplasmic reticulum and the transverse tubules around each(More)
Brown adipose tissue uncoupling protein-1 (UCP1) plays a major role in the control of energy balance in rodents. It has long been thought, however, that there is no physiologically relevant UCP1 expression in adult humans. In this study we show, using an original approach consisting of sorting cells from various tissues and differentiating them in an(More)
Multilineage progenitor cells, diversely designated as MSC, MAPC, or MDSC, have been previously extracted from long-term cultures of fetal and adult organs (e.g., bone marrow, brain, lung, pancreas, muscle, adipose tissue, and several others). The identity and location, within native tissues, of these elusive stem cells are described here. Subsets of(More)
HAX-1 comprises a family of ubiquitously expressed proteins with antiapoptotic properties. In the current study, we investigated HAX-1's temporospatial distribution in rat striated muscles during development and in adulthood. In cardiocytes, HAX-1 is organized at the level of Z-disks throughout embryogenesis and adulthood; however, in skeletal myofibers, it(More)
HAX-1 comprises a family of ubiquitously expressed proteins that play important roles in the regulation of programmed cell death. Herein, we provide a comprehensive review of the expression profile of HAX-1 and its functional implications during health and disease, highlighting its direct involvement in the development of congenital neutropenia and neural(More)
  • 1