Solomon R . Pollack

Learn More
BACKGROUND Electrical stimulation is used to treat nonunions and to augment spinal fusions. We studied the biochemical pathways that are activated in signal transduction when various types of electrical stimulation are applied to bone cells. METHODS Cultured MC3T3-E1 bone cells were exposed to capacitive coupling, inductive coupling, or combined(More)
In this study, we sought to determine if there is a requirement for calcium entry from the extracellular space as well as calcium from intracellular stores to produce real-time intracellular calcium responses in cultured bone cells subjected to fluid flow. Understanding calcium cell signaling may help to elucidate the biophysical transduction mechanism(s)(More)
A novel approach was utilized to grow in vitro mineralized bone tissue using lighter-than-water, polymeric scaffolds in a high aspect ratio rotating bioreactor. We have adapted polymer microencapsulation methods for the formation of hollow, lighter-than-water microcarriers of degradable poly(lactic-co-glycolic acid). Scaffolds were fabricated by sintering(More)
An important issue in tissue engineering concerns the possibility of limited tissue ingrowth in tissue-engineered constructs because of insufficient nutrient transport. We report a dynamic flow culture system using high-aspect-ratio vessel rotating bioreactors and 3D scaffolds for culturing rat calvarial osteoblast cells. 3D scaffolds were designed by(More)
Isolated bone cells from the calvaria of newborn rats were grown in monolayer on polyurethane membranes in specially constructed culture chambers. These were subjected to cyclic biaxial mechanical strains of 0.02 per cent (200 microstrain), 0.04 per cent (400 microstrain), and 0.1 per cent (1000 microstrain) at a frequency of one hertz for periods ranging(More)
Using a parallel-plate flow chamber and fura-2 fluorescence microscopy, intracellular calcium was measured cell by cell in preconfluent primary culture rat calvarial bone cells to 18, 35, and 70 dynes/cm2 of fluid-induced shear stress. A heterogeneous response with respect to peak amplitude and latency was observed for the culture, with an overriding(More)
A microelectrode technique has been developed to enable the study of stress-generated potentials (SGP) in bone to a spatial resolution of 5 micrometers. The technique has been used to measure the electrical potentials as a function of bone micromorphology in four-point bending. Electric fields ranging from 30 to 10(3) times greater than is measured by(More)
Two hundred seventy-one tibial nonunions of average duration of 23.5 months (range, 9-69 months) were treated with direct current (167 patients), capacitive coupled electrical stimulation (56 patients), or bone graft surgery (48 patients). Logistic regression analysis was used to compare heal rates among the 3 treatment methods, to identify risk factors(More)
The objective of this study was to determine the origin of stress-generated potentials (SGPs) in fluid-saturated bone. Stress-generated potentials were studied as a function of the conductivity, NaCl concentration, and viscosity of the fluid contained within cortical human and bovine bone. Bone samples were soaked in solutions in which NaCl and sucrose(More)