Solange Akselrod

Learn More
Heart rate variability (HRV) is a major noninvasive technique for evaluating the autonomic nervous system (ANS). Use of time-frequency approach to analyze HRV allows investigating the ANS behavior from the power integrals, as a function of time, in both steady-state and non steady-state. Power integrals are examined mainly in the low-frequency and the(More)
Autonomic function during sleep and wakefulness has been extensively investigated, however information concerning autonomic changes during the wake to sleep transition is scarce. The objective of the present study was to non-invasively characterize autonomic function and additional physiologic changes during sleep onset in normal and abnormal sleep. The(More)
When spectral analysis of the heart rate (HR) signal is performed, it is quite common to attribute the HF indexes of heart rate variability (HRV) to cardiac vagal control. The paradigm underlying this attribution states that changes in cardiac vagal outflow correspond to a proportional change in respiratory sinus arrhythmia (RSA). However, recent studies(More)
In this study we present a noninvasive method that enables the investigation of the fetal heart rate (FHR) fluctuations. The objective was to design a quantitative measurement to assess the fetal autonomic nervous system and to investigate its development as a function of the gestational age. Our Medical Physics group has developed a complex algorithm for(More)
Following heart transplant (HT), the patient's heart functions under complete cardiac denervation. As a result, the variability in physiologic signals is extremely reduced. We have previously reported that in addition to the typical spectral components (of very low amplitude), part of the HT patients (above 50%) demonstrated unexpected additional peaks in(More)
Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of(More)
A single pacemaker cell model and its response to repetitive external depolarization stimulations is described in this paper. This model is a simple model based on the two most important functional properties of the cardiac pacemaker cells. The first property is the intrinsic pacemaker cycle length, which is an 'internal' parameter of the cell, describing(More)
In this paper, we present an original model of the atria, based on our hypothesis that atrial cells have features of pacemaker cells, characterized by their normally longer intrinsic cycle lengths and different type of connection (stronger) than the, sino-atrial (SA) node pacemaker cells. The atrium is simulated by a two-dimensional array of pacemaker cells(More)
A pacemaker cell pair model and the dynamic interaction between the two pacemaker cells is described in this paper. It is an extension of our single pacemaker cell model, in which we studied its response to repetitive external depolarization stimulations. This model is a simple model based on the two most important functional properties of the cardiac(More)
A dripping faucet is an example of an everyday system that exhibits surprisingly rich dynamics ranging from periodic to chaotic. Using a simple capacitive device, we experimentally demonstrate that the dynamics is determined by the degree of synchronization between two temporally disparate processes: the time at which a drop attains a critical mass and an(More)