Solaiman Tarafder

Learn More
Calcium phosphates (CaPs) are the most widely used bone substitutes in bone tissue engineering due to their compositional similarities to bone mineral and excellent biocompatibility. In recent years, CaPs, especially hydroxyapatite and tricalcium phosphate, have attracted significant interest in simultaneous use as bone substitute and drug delivery vehicle,(More)
This study reports the manufacturing process of 3D interconnected macroporous tricalcium phosphate (TCP) scaffolds with controlled internal architecture by direct 3D printing (3DP), and high mechanical strength obtained by microwave sintering. TCP scaffolds with 27%, 35% and 41% designed macroporosity with pore sizes of 500 μm, 750 μm and 1000 μm,(More)
Despite the excellent bioactivity of hydroxyapatite (HA) ceramics, poor mechanical strength has limited the applications of these materials primarily to coatings and other non-load-bearing areas as bone grafts. Using synthesized HA nanopowder, dense compacts with grain sizes in the nanometer to micrometer range were processed via microwave sintering between(More)
The objective of this study was to evaluate the influence of MgO and SrO doping on the mechanical and biological properties of beta-tricalcium phosphate (beta-TCP). beta-TCP was doped with two different binary compositions, 0.25 and 1.0wt.% SrO along with 1.0wt.% MgO. MgO and SrO doping increased the beta phase stability at a sintering temperature of 1250(More)
In this study, we applied electrical polarization technique to increase adsorption and control protein release from biphasic calcium phosphate (BCP). Three different biphasic calcium phosphate (BCP) composites, with hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP), were processed and electrically polarized. Our study showed that stored charge was(More)
The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study(More)
General trends in synthetic bone grafting materials are shifting towards approaches that can illicit osteoinductive properties. Pharmacologics and biologics have been used in combination with calcium phosphate (CaP) ceramics, however, they have recently become the target of scrutiny over safety. The importance of trace elements in natural bone health is(More)
In spite of having excellent biocompatibility and osteogenic property of hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP), concerns have been raised regarding their degradation kinetics. Complete in vivo degradation of HAp takes years because of its slow degradation rate, and fast degradation rate of β-TCP limits its application. Biphasic calcium(More)
The presence of interconnected macro pores is important in tissue engineering scaffolds for guided tissue regeneration. This study reports in vivo biological performance of interconnected macro porous tricalcium phosphate (TCP) scaffolds due to the addition of SrO and MgO as dopants in TCP. We have used direct three dimensional printing (3DP) technology for(More)
The aim of this work is to evaluate the influence of MgO, SrO and SiO₂ doping on mechanical and biological properties of β-tricalcium phosphate (β-TCP) to achieve controlled resorption kinetics of β-TCP system for maxillofacial and spinal fusion application. We prepared dense TCP compacts of four different compositions, i) pure β-TCP, ii) β-TCP with 1.0wt.%(More)