Learn More
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. 'Genetic rescue' techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few(More)
Beak and feather disease virus (BFDV) infections are often fatal to both captive and wild parrot populations. Its recent discovery in a wild population of native red-fronted parakeets has raised concerns for the conservation of native parrots, all of which are threatened or endangered. The question of a recent introduction versus a native genotype of the(More)
Severe population bottlenecks are expected to lead to increases in inbreeding depression and to reduce the long-term viability of populations. We compared hatching failure across 51 threatened bird species to test the relation between the size of population bottleneck and population viability. Bottleneck size was defined as the lowest population size(More)
We produced replicated experimental lines of inbred fruit flies Drosophila melanogaster to test the effects of crossing different bottlenecked populations as a method of 'genetic rescue' for endangered species lacking outbred donor populations. Two strains differing in the origin of the founders were maintained as isolated populations in a laboratory(More)
Genetic rescue can reduce inbreeding depression and increase fitness of small populations, even when the donor populations are highly inbred. In a recent experiment involving two inbred island populations of the New Zealand South Island robin, Petroica australis, reciprocal translocations improved microsatellite diversity and individual fitness. While(More)
  • 1