Learn More
Absent, small, or homeotic disc1 (Ash1) is a trithorax group histone methyltransferase that is involved in gene activation. Although there are many known histone methyltransferases, their regulatory mechanisms are poorly understood. Here, we present the crystal structure of the human ASH1L catalytic domain, showing its substrate binding pocket blocked by a(More)
Sestrins are stress-inducible metabolic regulators with two seemingly unrelated but physiologically important functions: reduction of reactive oxygen species (ROS) and inhibition of the mechanistic target of rapamycin complex 1 (mTORC1). How Sestrins fulfil this dual role has remained elusive so far. Here we report the crystal structure of human Sestrin2(More)
Recently, acyl-CoA:cholesterol acyltransferase was found to be present as two isoforms, ACAT-1 and ACAT-2, in mammalian tissues with different metabolic functions and tissue-specific locations. In this study, the isoforms were mass-produced individually from insect cells to establish a more sensitive and reliable screening method for specific inhibitors(More)
Three naphthoquinones were isolated by bioassay-guided fractionation from the CHCl(3) extracts of roots of Lithospermum erythrorhizon. They were identified as acetylshikonin (1), isobutyrylshikonin (2), and beta-hydroxyisovalerylshikonin (3) on the basis of their spectroscopic analyses. The compounds 1-3 were tested for their inhibitory activities against(More)
Oxidation of low density lipoprotein (LDL) is strongly implicated as a key process in the onset of atherosclerosis. In this study, nine alkylated (C10-C5) flavonoids from Sophora flavescens were examined for their inhibitory effects on copper-induced LDL oxidation. Of the flavonoids tested, sophoraflavanone G (1), kurarinone (2), kurarinol (3), norkurarinol(More)
We investigated the mechanism of spontaneous cholesterol efflux induced by acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibition, and how an alteration of cholesterol metabolism in macrophages impacts on that in HepG2 cells. Oleic acid anilide (OAA), a known ACAT inhibitor reduced lipid storage substantially by promotion of cholesterol catabolism(More)
Acyl-CoA: cholesterol acyltransferase (ACAT) plays an important role in the esterification of cholesterol with its substrates, cholesterol and fatty acyl coenzyme A, to facilitate both intracellular storage and intercellular transport. ACAT-1 is more involved in macrophage foam cell formation and ACAT-2 plays a critical role in the cholesterol absorption(More)
A series of pyrazoline derivatives were prepared for evaluating their acyl-CoA:cholesterol acyltransferase activities. 3-(3,5-Di-tert-butyl-4-hydroxyphenyl)-5-(multi-substituted 4-hydroxyphenyl)-2-pyrazolines 4a-i were shown in vitro inhibitory activity on hACAT-1 and -2.
For eukaryotes, fine tuning of gene expression is necessary to coordinate complex genetic information. Recent studies have shown that noncoding RNAs (ncRNAs) play central roles in this process. For example, ncRNAs participate in multiple diverse functions such as mRNA degradation, epigenetic regulation and alternative splicing. The findings regarding this(More)
Antiatherosclerotic effects of ethanolic extracts of Artemisia princeps Pampanini cv. Sajabal (ESJ) were investigated in low-density lipoprotein receptor deficient (LDLR(-/-)) mice. The Western diet-induced high levels of total cholesterol and triglyceride were similar in the ESJ and control groups. However, circulating oxidized LDL was significantly(More)