Sofoklis S. Makridis

Learn More
This work presents a systematic approach for the optimal design and optimization of metal-hydride materials and processes for efficiency hydrogen storage. Techniques for the synthesis and characterization of novel metal-hydride materials are presented in a view of designing material to enhance storage efficiency. More specifically the synthesis of a(More)
In this research, structural-functional integrated cement-based materials were prepared by employing cement paste and a microencapsulated phase change material (MPCM) manufactured using urea-formaldehyde resin as the shell and paraffin as the core material. The encapsulation ratio of the MPCM could reach up to 91.21 wt%. Thermal energy storage cement pastes(More)
Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties,(More)
We report on the efficiency improvement of organic solar cells (OPVs) based on the low energy gap polyfluorene derivative, APFO-3, and the soluble C60 fullerene PCBM, upon addition of a residual amount of poly (4-vinylpyridine) (PVP). We find that the addition of 1% by weight of PVP with respect to the APFO-3 content leads to an increase of efficiency from(More)
In this work, TiFe-based alloys have been developed according to the stoichiometry Ti1-xAx Fe1-yBy (A [triple bond] Zr; B [triple bond] Mn, V). The hydrogen solubility properties have been investigated to develop dynamic hydrides of Ti-based alloys for hydrogen storage applications. The hydrogenation behavior of these alloys has been studied, and their(More)
Magnetic tunnel junction nanopillar with interfacial perpendicular magnetic anisotropy (PMA-MTJ) becomes a promising candidate to build up spin transfer torque magnetic random access memory (STT-MRAM) for the next generation of non-volatile memory as it features low spin transfer switching current, fast speed, high scalability, and easy integration into(More)
A simple microfluidic control method that uses a piezoelectric dispenser head is developed to fabricate microdots. A glycerol mixture was used as the test fluid to simulate conductive metallic solutions. The orifice diameter of the dispenser was 50 µm. Investigations were conducted at room temperature (25 ˝ C). For each bipolar waveform, fluid was extruded(More)
Recently, amine-functionalized materials as a prospective chemical sorbent for post combustion CO 2 capture have gained great interest. However, the amine grafting for the traditional MCM-41, SBA-15, pore-expanded MCM-41 or SBA-15 supports can cause the pore volume and specific surface area of sorbents to decrease, significantly affecting the CO 2(More)
Biomasses are organic materials that are derived from any living or recently-living structure. Plenty of biomasses are produced nationwide. Biomasses are mostly combusted and usually discarded or disposed of without treatment as biomass ashes, which include wood and sugarcane bagasse ashes. Thus, recycling or treatment of biomass ashes leads to utilizing(More)
FePt-Ag nanocomposite films with large perpendicular magnetic anisotropy have been fabricated by alternate-atomic-layer electron beam evaporation onto MgO(100) substrates at the low temperature of 300 ˝ C. Their magnetization behavior and microstructure have been studied. The surface topography was observed and varied from continuous to nanogranular(More)