Sofija Jovanović

Learn More
Mutations within the with-no-K(Lys) (WNK) kinases cause Gordon's syndrome characterized by hypertension and hyperkalaemia. WNK kinases phosphorylate and activate the STE20/SPS1-related proline/alanine-rich kinase (SPAK) protein kinase, which phosphorylates and stimulates the key Na(+):Cl(-) cotransporter (NCC) and Na(+):K(+):2Cl(-) cotransporters (NKCC2)(More)
Transgenic mice overexpressing SUR2A, a subunit of ATP-sensitive K(+) (K(ATP)) channels, acquire resistance to myocardial ischaemia. However, the mechanism of SUR2A-mediated cytoprotection is yet to be fully understood. Adenoviral SUR2A construct (AV-SUR2A) increased SUR2A expression, number of K(ATP) channels and subsarcolemmal ATP in glycolysis-sensitive(More)
High-altitude residents have lower mortality rates for ischaemic heart disease and this is ascribed to cardiac gene remodelling by chronic hypoxia. SUR2A is a cardioprotective ABC protein serving as a subunit of sarcolemmal ATP-sensitive K(+) channels. The purpose of this study was to determine whether SUR2A is regulated by mild hypoxia in vivo and to(More)
The effects of hypoxia on gene expression have been vigorously studied, but possible effects of small changes in oxygen tension have never been addressed. SUR2A is an atypical ABC protein serving as a regulatory subunit of sarcolemmal ATP-sensitive K(+) (KATP) channels. Up-regulation of SUR2A is associated with cardioprotection and improved physical(More)
It is a consensus view that a strategy to increase heart resistance to ischaemia-reperfusion is a warranted. Here, based on our previous study, we have hypothesized that a nicotinamide-rich diet could increase myocardial resistance to ischaemia-reperfusion. Therefore, the purpose of this study was to determine whether nicotinamide-rich diet would increase(More)
BACKGROUND ATP-sensitive K(+) (K(ATP)) channels link intracellular metabolism with membrane excitability and play crucial roles in cellular physiology and protection. The K(ATP) channel protein complex is composed of pore forming, Kir6.x (Kir6.1 or Kir6.2) and regulatory, SURx (SUR2A, SUR2B or SUR1), subunits that associate in different combinations. The(More)
Because we were interested in assessing glucose-mediated regulation of the activity of sarcolemmal ATP-sensitive K(+) channels (K(ATP) channels) (which are closed by physiological levels of intracellular ATP and serve to couple intracellular metabolism with the membrane excitability in the heart) during ischemia, we performed experiments designed to test(More)
A recent clinical study demonstrated that a testosterone supplementation improves functional capacity in elderly female patients suffering from heart failure. These findings prompted us to consider possible mechanisms of testosterone-induced cardioprotection in females. To address this question we have used a pure female population of rat heart embryonic(More)
SUR2A is an ATP-binding protein that serves as a regulatory subunit of cardioprotective ATP-sensitive K(+) (K(ATP) ) channels. Based on signalling pathway regulating SUR2A expression and SUR2A role in regulating numbers of fully assembled K(ATP) channels, we have suggested that nicotinamide-rich diet could improve physical endurance by stimulating SUR2A(More)