Sofia Quaglioni

Learn More
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians , and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This(More)
We apply the ab initio no-core shell model combined with the resonating-group method approach to calculate the cross sections of the (3)H(d,n)(4)He and (3)He(d,p)(4)He fusion reactions. These are important reactions for the big bang nucleosynthesis and the future of energy generation on Earth. Starting from a selected similarity-transformed chiral(More)
We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The(More)
For the first time the differential cross section for the elastic neutron-triton (n-(3)H) and neutron-deuteron (n-(2)H) scattering at 14.1 MeV has been measured by using an inertial confinement fusion facility. In these experiments, which were carried out by simultaneously measuring elastically scattered (3)H and (2)H ions from a deuterium-tritium(More)
Absolute cross sections have been determined following single neutron knockout reactions from 10Be and 10C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description(More)
The chiral low-energy constants c(D) and c(E) are constrained by means of accurate ab initio calculations of the A = 3 binding energies and, for the first time, of the triton beta decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants, a result of the surprising fact that the determination of(More)
The neutron-rich unbound 7He nucleus has been the subject of many experimental investigations. While the ground-state 3/2- resonance is well established, there is a controversy concerning the excited 1/2- resonance reported in some experiments as low lying and narrow (E(R)∼1  MeV, Γ≤1  MeV) while in others as very broad and located at a higher energy. This(More)
The Borromean ^{6}He nucleus is an exotic system characterized by two halo neutrons orbiting around a compact ^{4}He (or α) core, in which the binary subsystems are unbound. The simultaneous reproduction of its small binding energy and extended matter and point-proton radii has been a challenge for ab initio theoretical calculations based on traditional(More)
Measurements of the neutron spectrum from the T(t,2n)4He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to(More)
We develop a new ab initio many-body approach capable of describing simultaneously both bound and scattering states in light nuclei, by combining the resonating-group method with the use of realistic interactions, and a microscopic and consistent description of the nucleon clusters. This approach preserves translational symmetry and Pauli principle. We(More)