Sofia Quaglioni

Learn More
The UNEDF project was a large-scale collaborative effort that applied high-performance computing to the nuclear quantum many-body problem. UNEDF demonstrated that close associations among nuclear physicists, mathematicians , and computer scientists can lead to novel physics outcomes built on algorithmic innovations and computational developments. This(More)
Measurements of the neutron spectrum from the T(t,2n)4He (tt) reaction have been conducted using inertial confinement fusion implosions at the OMEGA laser facility. In these experiments, deuterium-tritium (DT) gas-filled capsules were imploded to study the tt reaction in thermonuclear plasmas at low reactant center-of-mass (c.m.) energies. In contrast to(More)
Absolute cross sections have been determined following single neutron knockout reactions from 10Be and 10C at intermediate energy. Nucleon density distributions and bound-state wave function overlaps obtained from both variational Monte Carlo (VMC) and no core shell model (NCSM) ab initio calculations have been incorporated into the theoretical description(More)
The chiral low-energy constants c(D) and c(E) are constrained by means of accurate ab initio calculations of the A = 3 binding energies and, for the first time, of the triton beta decay. We demonstrate that these low-energy observables allow a robust determination of the two undetermined constants, a result of the surprising fact that the determination of(More)
  • 1