Learn More
Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase gamma (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and(More)
Mutations in the gene coding for the catalytic subunit of the mitochondrial DNA (mtDNA) polymerase g (POLG1) have recently been described in patients with diverse clinical presentations, revealing a complex relationship between genotype and phenotype in patients and their families. POLG1 was sequenced in patients from different European diagnostic and(More)
OBJECTIVE Dysfunction of mitochondrial DNA polymerase gamma (POLG) has been recently recognized as an important cause of inherited neurodegenerative diseases. We have reported dominant and recessive inheritance of parkinsonism, mitochondrial myopathy, and premature amenorrhea in five ethnically distinct families with POLG1 mutations. This prompted us to(More)
Mitochondrial dysfunction affects cellular energy metabolism, but less is known about the consequences for cytoplasmic biosynthetic reactions. We report that mtDNA replication disorders caused by TWINKLE mutations-mitochondrial myopathy (MM) and infantile onset spinocerebellar ataxia (IOSCA)-remodel cellular dNTP pools in mice. MM muscle shows(More)
OBJECTIVE We report novel defects of mitochondrial translation elongation factor Ts (EFTs), with high carrier frequency in Finland and expand the manifestations of this disease group from infantile cardiomyopathy to juvenile neuropathy/encephalopathy disorders. METHODS DNA analysis, whole-exome analysis, protein biochemistry, and protein modeling. (More)
Mitochondrial myopathy (MM) with progressive external ophthalmoplegia (PEO) is a common manifestation of mitochondrial disease in adulthood, for which there is no curative therapy. In mice with MM, ketogenic diet significantly delayed progression of the disease. We asked in this pilot study what effects high-fat, low-carbohydrate "modified Atkins" diet(More)
Haematopoietic progenitor cells show special sensitivity to mitochondrial DNA (mtDNA) mutagenesis, which suggests that increased mtDNA mutagenesis could underlie anemias. Here we show that elevated mtDNA mutagenesis in mice with a proof-reading deficient mtDNA polymerase (PolG) leads to incomplete mitochondrial clearance, with asynchronized iron loading in(More)
  • 1