Learn More
To assess the safety and therapeutic efficacy of autologous human bone marrow cell (BMC) transplantation and the administration of granulocyte macrophage-colony stimulating factor (GM-CSF), a phase I/II open-label and nonrandomized study was conducted on 35 complete spinal cord injury patients. The BMCs were transplanted by injection into the surrounding(More)
OBJECTIVE Granulocyte macrophage colony stimulating factor (GM-CSF) is a potent hematopoietic cytokine, which stimulates stem cell proliferation in the bone marrow and inhibits apoptotic cell death in leukocytes. However, the effects of GM-CSF in the central nervous system are still unclear. The present study was undertaken to determine if GM-CSF can rescue(More)
Recently, we reported that GM-CSF showed therapeutic effects on the spinal cord injury (SCI) in rat model possibly via its anti-apoptotic activity in the nervous system. This study investigated the molecular mechanism of its anti-apoptotic and neuroprotective effects in N2a neuroblastoma cells and in rat SCI model. GM-CSF inhibited staurosporine-induced(More)
The purpose of this study is to evaluate the feasibility of human amniotic membrane (HAM) as a chondrocyte carrier by assessing cell proliferation and maintenance of phenotype in vitro and cartilage regeneration in vivo. Intact HAM was treated with 0.1% trypsin-ethylenediaminetetraacetic acid (EDTA) for 15 min and the epithelial cells removed to make a(More)
The importance of scaffold biomaterials has been emphasized for in vitro culture of tissue-engineered cartilage in a three-dimensional (3D) environment. In this study, we examined the feasibility of fibrin glue, mixed with hyaluronic acid (HA) as a composite scaffold. Fibrin glue has been a useful cell delivery matrix for cartilage tissue engineering and HA(More)
Chondrogenic differentiation and cartilage tissue formation derived from stem cells are highly dependent on both biological and mechanical factors. This study investigated whether or not fibrin-hyaluronic acid (HA) coupled with low-intensity ultrasound (LIUS), a mechanical stimulation, produces an additive or synergistic effect on the chondrogenesis of(More)
We have observed in our previous study that a cell-derived extracellular matrix (ECM) scaffold could assure the growth of a cartilage tissue construct in vitro. The purpose of the present study was to evaluate the feasibility of a chondrocyte-seeded cell-derived ECM scaffold by implanting it in vivo in nude mouse. A porous cell-derived ECM scaffold was(More)
A new micro cell chip which can induce stem cells to differentiate into specific body cell types has been designed and fabricated for tissue engineering. This paper presents the test results of a micro cell stimulator which can provide a new miniaturized tool in cell stimulation, culture and analysis for stem cell research. The micro cell stimulator is(More)
Extracellular matrix (ECM) materials have diverse physiological functions by themselves and can also act as reservoirs of cytokines and growth factors, so that they can affect the cell phenotype, attachment, migration and proliferation of cells. In this study, an ECM scaffold derived from porcine cartilage was evaluated for whether it can support and(More)
OBJECT Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a potent hemopoietic cytokine that stimulates stem cell proliferation in the bone marrow and inhibits apoptotic cell death in leukocytes. Its effects in the central nervous system, however, are still unclear. The present study was undertaken to determine if GM-CSF can rescue neuronal cells(More)