Snezana Levic

Learn More
Auditory hair cells (HCs) have the remarkable property to indefinitely sustain high rates of synaptic vesicle release during ongoing sound stimulation. The mechanisms of vesicle supply that allow such indefatigable exocytosis at the ribbon active zone remain largely unknown. To address this issue, we characterized the kinetics of vesicle recruitment and(More)
Auditory hair cell defect is a major cause of hearing impairment, often leading to spiral ganglia neuron (SGN) degeneration. The cell loss that follows is irreversible in mammals, because inner ear hair cells (HCs) have a limited capacity to regenerate. Here, we report that in the adult brain of both rodents and humans, the ependymal layer of the lateral(More)
The structural phenotype of neural connections in the auditory brainstem is sculpted by spontaneous and stimulus-induced neural activities during development. However, functional and molecular mechanisms of spontaneous action potentials (SAPs) in the developing cochlea are unknown. Additionally, it is unclear how regenerating hair cells establish their(More)
Advances in refining the "fluid mosaic" model of the plasma membrane have revealed that it is wrought with an ordered lipid composition that undergoes remarkable plasticity during cell development. Despite the evidence that specific signaling proteins and ion channels gravitate toward these lipid microdomains, identification of their functional impact(More)
The enzyme nitric oxide (NO) synthase, that produces the signaling molecule NO, has been identified in several cell types in the inner ear. However, it is unclear whether a measurable quantity of NO is released in the inner ear to confer specific functions. Indeed, the functional significance of NO and the elementary cellular mechanism thereof are most(More)
Long-term intrinsic enhanced excitability is a characteristic of cellular plasticity and learning-dependent modifications in the activity of neural networks. The regulation of voltage-dependent K+ channels by phosphorylation/dephosphorylation and their localization is proposed to be important in the control of cellular plasticity. One-trial conditioning in(More)
During development, synaptic exocytosis by cochlear hair cells is first initiated by patterned spontaneous Ca(2+) spikes and, at the onset of hearing, by sound-driven graded depolarizing potentials. The molecular reorganization occurring in the hair cell synaptic machinery during this developmental transition still remains elusive. We characterized the(More)
Accelerated age-related hearing loss disrupts high-frequency hearing in inbred CD-1 mice. The p.Ala88Val (A88V) mutation in the gene coding for the gap-junction protein connexin30 (Cx30) protects the cochlear basal turn of adult CD-1Cx30A88V/A88V mice from degeneration and rescues hearing. Here we report that the passive compliance of the cochlear partition(More)
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the(More)
Chickens are an invaluable model for exploring auditory physiology. Similar to humans, the chicken inner ear is morphologically and functionally close to maturity at the time of hatching. In contrast, chicks can regenerate hearing, an ability lost in all mammals, including humans. The extensive morphological, physiological, behavioral, and pharmacological(More)