Sneha Sudha Komath

Learn More
Although for a long time carbohydrate binding property has been used as the defining feature of lectins, studies carried out mostly during the last two decades or so demonstrate that many plant lectins exhibit specific interactions with small molecules that are predominantly hydrophobic in nature. Such interactions, in most cases, appear to be at specific(More)
The possible role of the central beta-domain (residues 151-287) of streptokinase (SK) was probed by site-specifically altering two charged residues at a time to alanines in a region (residues 230-290) previously identified by Peptide Walking to play a key role in plasminogen (PG) activation. These mutants were then screened for altered ability to activate(More)
N-acylethanolamines (NAEs) have attracted the attention of researchers in the last two decades due to their occurrence in biological membranes under conditions of stress as well as under normal conditions. Differential scanning calorimetric studies have been carried out on dry and hydrated samples of a homologous series of N-acylethanolamines containing(More)
The interaction of several free-base porphyrins and their corresponding copper(II) and zinc(II) derivatives with the galactose-specific lectin from snake gourd (Trichosanthes anguina) seeds has been investigated by absorption and fluorescence spectroscopic techniques. The lectin dimer contains two apparently equivalent binding sites for the porphyrins.(More)
We showed previously that Entamoeba histolytica PIG-L exhibits a novel metal-independent albeit metal-stimulated activity. Using mutational and biochemical analysis, here we identify Asp-46 and His-140 of the enzyme as being important for catalysis. We show that these mutations neither affect the global conformational of the enzyme nor alter its metal(More)
To search multi drug resistance modulators, acridones carrying hydroxyl amine substituent at N-10 and COOH/Cl at C-4 were investigated for their interactions with the three components of efflux pump viz. P-gp, ATP, and Mg(2+). Experimental and theoretical results indicated that the compounds with COOH group at C-4 interact with P-gp and Mg(2+) while other(More)
Glycosylphosphatidyl inositol (GPI)-anchored proteins in Candida albicans are responsible for a vast range of functions, and deletions in certain GPI-anchored proteins severely reduce adhesion and virulence of this organism. In addition, completely modified GPIs are necessary for virulence. GPI anchor biosynthesis is essential for viability and starts with(More)
A novel co-regulation exists between the first step of GPI (glycosylphosphatidylinositol) anchor biosynthesis and the rate-determining step of ergosterol biosynthesis in Candida albicans. Depleting CaGpi19p, an accessory subunit of the enzyme complex that initiates GPI biosynthesis, down-regulates ERG11, altering ergosterol levels and drug response. This(More)
Physicochemical and saccharide-binding studies have been performed on Trichosanthes cucumerina seed lectin (TCSL). The agglutination activity of TCSL is highest in the pH range 8.0-11.0, whereas below pH 7.0 it decreases quite rapidly, which is consistent with the involvement of imidazole side chains of His residues, which titrate in this pH range, in the(More)
The interaction of different saccharides with the snake gourd (Trichosanthes anguina) seed lectin (SGSL) was investigated by fluorescence spectroscopy. Binding of 4-methylumbelliferyl-beta-D-galactopyranoside (MeUmb beta Gal) to SGSL resulted in a significant increase in the fluorescence emission intensity of the sugar at 376 nm, and this change was used to(More)