Smadar Cohen

Learn More
The present work explores cell cultivation in macroporous alginate scaffolds as a means to reproduce hepatocyte terminal differentiation in vitro. Newborn rat liver cell isolates, consisting of proliferating hepatocytes and progenitors, were seeded at high cell density of 125 x 10(6)/cm(3) within the scaffold and then cultivated for 6 wk in chemically(More)
The involvement of interleukin-1 (IL-1) in inflammation, tumor growth, and metastasis makes it an attractive target for therapeutic intervention. Here, we show that a continuous delivery of a low, but steady-state level of the naturally occurring IL-1 receptor antagonist (IL-1Ra) reduced inflammatory responses and inhibited tumor development in mice,(More)
Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate-based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth(More)
Mesenchymal stromal/stem cells (MSCs) have been investigated extensively through the past years, proving to have great clinical therapeutic potential. In vitro cultivation of MSCs in three-dimensional (3D) culture systems, such as scaffolds, hydrogels, or spheroids, have recently gained attention for tissue engineering applications. Studies on MSC spheroids(More)
A noninvasive, effective approach for immediate and painless heart pacing would have invaluable implications in several clinical scenarios. Here we present a novel strategy that utilizes the well-known mechano-electric feedback of the heart to evoke cardiac pacing, while relying on magnetic microparticles as leadless mechanical stimulators. We demonstrate(More)
Biomaterials capable of controlling the release of multiple growth factors (GFs) could potentially promote the integration of co-transplanted neural progenitor cells (NPCs) and stimulate the plasticity and regenerability of the lesioned spinal cord. As a first step towards the employment of such a vehicle for cell therapy, this study examined the capability(More)
  • 1