Learn More
Flowering time is a fundamental trait of maize adaptation to different agricultural environments. Although a large body of information is available on the map position of quantitative trait loci for flowering time, little is known about the molecular basis of quantitative trait loci. Through positional cloning and association mapping, we resolved the major(More)
Since the early 20th century, barley (Hordeum vulgare) has been a model for investigating the effects of physical and chemical mutagens and for exploring the potential of mutation breeding in crop improvement. As a consequence, extensive and well-characterized collections of morphological and developmental mutants have been assembled that represent a(More)
The comparative sequencing of several grass genomes has revealed that transposable elements are largely responsible for extensive variation in both intergenic and local genic content, not only between closely related species but also among individuals within a species. These observations indicate that a single genome sequence might not reflect the entire(More)
Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven(More)
PURPOSE To describe the clinical findings in a family with a benign form of mesial temporal lobe epilepsy and to identify the causative genetic factors. METHODS All participants were personally interviewed and underwent neurologic examination. The affected subjects underwent EEG and most of them neuroradiological examinations (MRI). All family members(More)
The identification of genes underlying complex quantitative traits such as grain yield by means of conventional genetic analysis (positional cloning) requires the development of several large mapping populations. However, it is possible that phenotypically related, but more extreme, allelic variants generated by mutational studies could provide a means for(More)
In the present study, we analysed allele-specific expression (ASE) in the selfing species barley to assess the frequency of cis-acting regulatory variation and the effects of genetic background, developmental differences and drought stress on allelic expression levels. We measured ASE ratios in 30 genes putatively involved in stress responses in five(More)
To understand better enzyme/DNA interactions and to design innovative detectors based on DNA nanoarrays, we need to study the effect of nanometric confinement on the biochemical activity of the DNA molecules. We focus on the study of the restriction enzyme reactions (DpnII) within DNA nanostructures on flat gold films by atomic force microscopy (AFM).(More)
Sophisticated genome manipulation requires the possibility to modify any intergenic or intragenic DNA sequence at will, without leaving large amounts of undesired vector DNA at the site of alteration. To this end, a series of vectors was developed from a previous gene knockout plasmid system to integrate nonselectable foreign DNA at any desired genomic(More)
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused in about 95% of SMA patients by homozygous deletion of the survival motor neuron 1 (SMN1) gene or its conversion to the highly homologous SMN2 gene. In the majority of cases, disease severity correlates inversely with increased SMN2 copy number. Because of the comparatively high(More)