Slobodan Ruzicic

Learn More
Transcription factors (TFs) are key regulatory proteins that enhance or repress the transcriptional rate of their target genes by binding to specific promoter regions (i.e. cis-acting elements) upon activation or de-activation of upstream signaling cascades. TFs thus constitute master control elements of dynamic transcriptional networks. TFs have(More)
Quantitative reverse transcription – polymerase chain reaction (qRT-PCR) has been demonstrated to be particularly suitable for the analysis of weakly expressed genes, such as those encoding transcription factors. Rice (Oryza sativa L.) is an important crop and the most advanced model for monocotyledonous species; its nuclear genome has been sequenced and(More)
Large molecules require a nuclear localization signal (NLS) for translocation into the nucleus. Classical NLSs are rich in basic amino acids and they represent three groups, based on their structural features: SV40 T-antigen-type, yeast mating factor Matalpha-2-type, and bipartite NLSs. DNA-binding-with-one-finger (DOF) transcription factors play important(More)
Introduction Transcription factors are proteins that regulate gene expression levels by binding to specific short DNA sequences (cisacting elements) in the promoter region of target genes, and enhancing or repressing their transcription rate. Their identification is a key step for the reconstruction of transcriptional regulatory networks. The availability(More)
  • 1