Slawomir Prucnal

Learn More
Chalcogen-hyperdoped silicon shows potential applications in silicon-based infrared photodetectors and intermediate band solar cells. Due to the low solid solubility limits of chalcogen elements in silicon, these materials were previously realized by femtosecond or nanosecond laser annealing of implanted silicon or bare silicon in certain background gases.(More)
There is a clear and increasing interest in short time annealing processing far below one second, i.e. the lower limit of Rapid Thermal Processing (RTP) called spike annealing. This was driven by the need of suppressing the so-called Transient Enhanced Diffusion in advanced boron-implanted shallow pn-junctions in silicon technology. Meanwhile the interest(More)
A key milestone for the next generation of high-performance multifunctional microelectronic devices is the monolithic integration of high-mobility materials with Si technology. The use of Ge instead of Si as a basic material in nanoelectronics would need homogeneous p- and n-type doping with high carrier densities. Here we use ion implantation followed by(More)
InAs with an extremely high electron mobility (up to 40,000 cm(2)/V s) seems to be the most suitable candidate for better electronic devices performance. Here we present a synthesis of inverted crystalline InAs nanopyramids (NPs) in silicon using a combined hot ion implantation and millisecond flash lamp annealing techniques. Conventional selective etching(More)
The optoelectronic applications of Si are restricted to the visible and near-infrared spectral range due to its 1.12 eV-indirect band gap. Sub-band gap light detection in Si, for instance, has been a long-standing scientific challenge for many decades since most photons with sub-band gap energies pass through Si unabsorbed. This fundamental shortcoming,(More)
In this letter, we demonstrate the formation of unique Ga/GaAs/Si nanowire heterostructures, which were successfully implemented in nanoscale light-emitting devices with visible room temperature electroluminescence. Based on our recent approach for the integration of InAs/Si heterostructures into Si nanowires by ion implantation and flash lamp annealing, we(More)
One of the solutions enabling performance progress, which can overcome the downsizing limit in silicon technology, is the integration of different functional optoelectronic devices within a single chip. Silicon with its indirect band gap has poor optical properties, which is its main drawback. Therefore, a different material has to be used for the on-chip(More)
The best method for the impurity doping to the host material is the ion implantation. Due to high melting point of the rare earth standard metal ion sources are useless. One of the solution is to use chemical compounds of rare earths characterized by low melting point. In this paper we describe the novel design of the ion source suitable for refractory(More)