Sladjana D. Marinkovic

Learn More
  • S. Marinković, M. Milisavljević, Z. Marinković
  • 2005
The anterior communicating artery (ACoA) and its branches were examined in 22 human brains after injecting Indian ink or methylmethacrylate. The ACoA branches were divided into the small and the large. Small branches were from 1 to 5 in number (mean 2), and from 70 to 270 Μm in diameter (mean 151 Μm). Seventy-six percent of the branches originated directly(More)
In a similar manner as in the papers [7] and [8], where explicit algorithms for finding the differential equations satisfied by holonomic functions were given, in this paper we deal with the space of the q-holonomic functions which are the solutions of linear q-differential equations with polynomial coefficients. The sum, product and the composition with(More)
  • M. Milisavljević, S. Marinković, Z. Marinković, S. Malobabić
  • 1988
The distal segment of the posterior cerebral artery (PCA), which extends from the junction with the posterior communicating artery to its terminal division into the parieto-occipital and calcarine arteries, was examined in 37 brains. Three types of distal segment were distinguished. In the first type (42.9 %), the terminal division was located either in the(More)
We construct the sequence of orthogonal polynomials with respect to an inner product defined in the sense of q-integration over several intervals in the complex plane. For such introduced polynomials we prove that all zeros lie in the smallest convex hull over the intervals in the complex plane. The results are stated precisely in some special cases, as(More)
We construct q-Taylor formula for the functions of several variables and develop some new methods for solving equations and systems of equations. They are much easier for application than the well-known ones. We introduce some values for measuring their accuracy, such as (r; q)-order of convergence. We made some analogue of known methods, such as q-Newton(More)