Learn More
Inositol-1,4,5-trisphosphate receptors (IP3Rs) are intracellular Ca2+ channels that are regulated by IP3 and Ca2+ and are modulated by many additional signals. These properties allow them to initiate and, via Ca2+-induced Ca2+ release, regeneratively propagate Ca2+ signals evoked by receptors that stimulate formation of IP3. The ubiquitous expression of(More)
Functional assays of inositol 1,4,5-trisphosphate receptors (IP3R) currently use 45Ca2+ release methods, fluorescent Ca2+ indicators within either the ER or cytosol, or electrophysiological analyses of IP3R in the nuclear envelope or artificial bilayers. None of the methods is presently amenable to the rapid, high-throughput quantitative analyses of IP3R(More)
Interactions between cyclic adenosine monophosphate (cAMP) and Ca(2+) are widespread, and for both intracellular messengers, their spatial organization is important. Parathyroid hormone (PTH) stimulates formation of cAMP and sensitizes inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3). We show that PTH communicates with IP(3)R via "cAMP junctions"(More)
Inositol 1,4,5-trisphosphate receptors (IP3Rs) release calcium ions, Ca2+, from intracellular stores, but their roles in mediating Ca2+ entry are unclear. IP3 stimulated opening of very few (1.9 +/- 0.2 per cell) Ca2+-permeable channels in whole-cell patch-clamp recording of DT40 chicken or mouse B cells. Activation of the B cell receptor (BCR) in(More)
In HEK cells stably expressing type 1 receptors for parathyroid hormone (PTH), PTH causes a sensitization of inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3) that is entirely mediated by cAMP and requires cAMP to pass directly from type 6 adenylyl cyclase (AC6) to IP(3)R2. Using DT40 cells expressing single subtypes of mammalian IP(3)R, we(More)
Inositol 1,4,5-trisphosphate receptors (IP(3)R) within the endoplasmic reticulum mediate release of Ca(2+) from intracellular stores. Different channels usually mediate Ca(2+) entry across the plasma membrane. In B lymphocytes and a cell line derived from them (DT40 cells), very few functional IP(3)R (approximately 2/cell) are invariably expressed in the(More)
Ca 2+ release by D-myo-inositol 1,4,5-trisphosphate receptors (IP 3 Rs) is widely considered to require the vicinal 4,5-bisphosphate motif of IP 3 , with P-5 and P-4 engaging the a and b domains of the binding site; using synthesis and mutagenesis we show that the adenine of synthetic glyconucleotides, through an interaction with Arg504, can replace the(More)
Ca(2+) release by d-myo-inositol 1,4,5-trisphosphate receptors (IP(3)Rs) is widely considered to require the vicinal 4,5-bisphosphate motif of IP(3), with P-5 and P-4 engaging the alpha and beta domains of the binding site; using synthesis and mutagenesis we show that the adenine of synthetic glyconucleotides, through an interaction with Arg504, can replace(More)
Previous structure-activity relationship studies of adenophostin A, a potent IP(3) receptor agonist, led us to design the novel adenophostin A analogues 5a-c, conjugating an aromatic group at the 5'-position to develop useful IP(3) receptor ligands. The common key intermediate, a D-ribosyl alpha-D-glucoside 10alpha, was stereoselectively synthesized by a(More)
The synthesis of adenophostin A (2) and two analogues [etheno adenophostin (4) and 8-bromo adenophostin (5)] modified at the adenine moiety, is reported. A combination of NMR analysis and molecular modelling was used to compare their structures in solution and determined that they all adopt very similar conformations. The analogues were tested for their(More)