Learn More
Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 +/- 0.5%; a controlled-NOT(More)
Emerging applications based on optical beams carrying orbital angular momentum (OAM) will probably require photonic integrated devices and circuits for miniaturization, improved performance, and enhanced functionality. We demonstrate silicon-integrated optical vortex emitters, using angular gratings to extract light confined in whispering gallery modes with(More)
Packet-switching characteristics are optimized across an integrated 4 4 optical crosspoint switch matrix consisting of active vertical-coupler-based switch cells. Optical gain difference between the shortest and the longest paths less than 3 dB is demonstrated. Bit error rate (BER) and power penalty measurements during packet routing have also been carried(More)
BACKGROUND Insulin resistance (IR) plays a vital role in the pathogenesis of Type 2 Diabetes Mellitus (T2DM). The mechanism of IR may be associated with inflammation, whereas the neutrophil-lymphocyte ratio (NLR) is a new indicator of subclinical inflammation. Scholars have rarely investigated the relationship between IR and NLR. This study aims to evaluate(More)
Based on weak fluctuation theory and the beam-wander model, the bit-error rate of a ground-to-satellite laser uplink communication system is analyzed, in comparison with the condition in which beam wander is not taken into account. Considering the combined effect of scintillation and beam wander, optimum divergence angle and transmitter beam radius for a(More)
Ultra-short- and short-reach optical interconnects are the new high growth applications for optical communications. High capacity density, high spectral efficiency, low cost, low power consumption, and fast configurability are some of the key requirements for potential optical transmission technology candidates. Based on recent progress in orbital angular(More)
The ability to rapidly switch between orbital angular momentum modes of light has important implications for future classical and quantum systems. In general, orbital angular momentum beams are generated using free-space bulk optical components where the fastest reconfiguration of such systems is around a millisecond using spatial light modulators. In this(More)
An 11.8km optical link is established to examine the intensity fluctuation of the laser beam transmission through atmosphere turbulence. Probability density function, fade statistic, and high-frequency spectrum are researched based on the analysis of the experimental data collected in each season of a year, including both weak and strong fluctuation cases.(More)
This paper demonstrates all-optical digital logic gates using bistable monolithic semiconductor ring lasers (SRLs). With the flexible multi-functional experimental setup, we have experimentally demonstrated the application of SRLs to realize logic functions including: AND, OR, NOR, XOR and all-optical non-return-to-zero (NRZ) to return-to-zero (RZ) format(More)
Packet-switching characteristics of an integrated 4 4 InGaAsP–InP active vertical coupler optical cross-point switch matrix are optimized. Optical gain differences of less then 3 dB between the shortest and longest switching paths are achieved. Biterror rate (BER) and power penalty measurements during packet routing have been carried out over the entire 4 4(More)