Siyka I. Shopova

Learn More
This article reviews the recent progress in optical biosensors that use the label-free detection protocol, in which biomolecules are unlabeled or unmodified, and are detected in their natural forms. In particular, it will focus on the optical biosensors that utilize the refractive index change as the sensing transduction signal. Various optical label-free(More)
Individual nanoparticles in aqueous solution are observed to be attracted to and orbit within the evanescent sensing ring of a Whispering Gallery Mode micro-sensor with only microwatts of driving power. This Carousel trap, caused by attractive optical gradient forces, interfacial interactions, and the circulating momentum flux, considerably enhances the(More)
Thermo-optic and reactive mechanisms for label-free sensing of bio-particles are compared theoretically for Whispering Gallery Mode (WGM) resonators (sphere, toroid) formed from silica and stimulated into a first order equatorial mode. Although it has been expected that a thermo-optic mechanism should "greatly enhance" wavelength shift signals [A.M. Armani(More)
We demonstrate a significant reduction in the limit of label-free detection of individual viral-sized nanoparticles in aqueous solution through the use of a frequency doubled telecom laser constructed from a distributed feedback-periodically poled lithium-niobate (DFB-PPLN) union. By driving a whispering gallery mode biosensor near a wavelength of 650 nm(More)
We develop a versatile integrated opto-fluidic ring resonator (OFRR) dye laser that can be operated regardless of the refractive index (RI) of the liquid. The OFRR is a micro-sized glass capillary with a wall thickness of a few micrometers. When the liquid in the core has an RI lower than that of the capillary wall (n=1.45), the capillary circular(More)
Optofluidic dye lasers hold great promise for adaptive photonic devices, compact and wavelength-tunable light sources, and micro total analysis systems. To date, however, nearly all those lasers are directly excited by tuning the pump laser into the gain medium absorption band. Here we demonstrate bioinspired optofluidic dye lasers excited by FRET, in which(More)
We demonstrate an opto-fluidic ring resonator dye laser using highly efficient energy transfer. The active lasing material consists of a donor and acceptor mixture and flows in a fused silica capillary whose circular cross section forms a ring resonator and supports the whispering gallery modes (WGMs) of high Q-factors (>107). The excited states are created(More)
We describe the synthesis of gold nanorods (NRs) nucleated by HgTe nanoparticles (NPs) of average size 3 nm in diameter. Growth of ~200 nm by ~50 nm NRs on various surfaces is achieved by using an intermediary polyelectrolyte layer. A poly(dimethyldiallylammonium) chloride (PDDA) monolayer on the surface attracts the thioglycolic acid (TGA) capped HgTe NPs(More)
We develop rapid chemical-vapor sensors based on optofluidic ring resonators (OFRRs). The OFRR is a glass capillary whose circular wall supports the circulating waveguide modes (WGMs). The OFRR inner surface is coated with a vapor-sensitive polymer. The analyte and polymer interaction causes the polymer refractive index to change, which is detected as a WGM(More)
Optical behavior analogous to electromagnetically induced transparency and absorption is observed in experiments using coupled fused-silica microspheres. This behavior results from interference between coresonant whispering-gallery modes of the two spheres. Coupled-resonator-induced transparency and absorption are observed. Which effect is seen depends on(More)