Siwei Bi

Learn More
BACKGROUND/AIMS Depressive symptoms are commonly observed in Alzheimer's disease (AD). The underlying mechanisms of depressive symptoms in AD remain unclear; frontolimbic circuitry dysfunction may play a role. We aimed to investigate the microstructural integrity of frontolimbic connectivity of specific fiber tracts in AD patients with and without(More)
L-Alanine dehydrogenase from Mycobacterium tuberculosis (L-MtAlaDH) catalyzes the NADH-dependent interconversion of l-alanine and pyruvate, and it is considered to be a potential target for the treatment of tuberculosis. The experiment has verified that amino acid replacement of the conserved active-site residues which have strong stability and no great(More)
The disruption of blood-brain barrier (BBB) and endothelial cell dysfunction, associated with the cerebrovascular deposition of the amyloid-beta (Abeta) protein, have been characterized as the key pathological characteristics in Alzheimer's disease (AD). In various biologic processes of AD, researchers have proven that mircroRNAs (miRNAs) play critical(More)
Mycobacterium tuberculosis L-alanine dehydrogenase (L-MtAlaDH) catalyzes the NADH-dependent reversible oxidative deamination of L-alanine to pyruvate and ammonia. L-MtAlaDH has been proposed to be a potential target in the treatment of tuberculosis. Based on the crystal structures of this enzyme, molecular dynamics simulations were performed to investigate(More)
Density functional theory (DFT) calculations have been performed to investigate the detailed mechanism of Rh(III)-catalyzed redox-neutral C-H activation of pyrazolones with PhC≡CPh. It is found that (1) the methylene C-H activation is prior to the phenyl C-H activation, (2) the N-N bond cleavage is realized via Rh(III) → Rh(I) → Rh(III) rather than via(More)
A density functional theory study was performed to understand the detailed mechanisms of the cross-benzoin reactions catalyzed by N-heterocyclic carbene (NHC) species. Our theoretical study predicted that the first H-transfer operates with water in solution as a mediator, and the second H-transfer undergoes a concerted mechanism rather than a stepwise one.(More)
The reactions of Sc(+)((3)D) with methane, ethane, and propane in the gas phase were studied theoretically by density functional theory. The potential energy surfaces corresponding to [Sc, C(n), H(2n+2)](+) (n=1-3) were examined in detail at the B3LYP/6-311++G(3df, 3pd)//B3LYP/6-311+G(d,p) level of theory. The performance of this theoretical method was(More)
A new type of Pd-catalyzed branching cyclizations of enediyne-imides towards furo[2,3-b]pyridines has been investigated with the help of DFT calculations. The role of the solvent DMF was probed based on the theoretical reaction mechanistic study. The chemical selectivity was investigated and found to be determined by the C[double bond, length as m-dash]C(More)
By carrying out density functional theoretical calculations, we have performed a detailed mechanistic study of the Au(I)-catalyzed cycloisomerization of 1,6-enylnyl ester in a dry and wet dichloromethane solvent corresponding to hydrogenation and hydrolysis processes, respectively. The hydrogenation and hydrolysis mechanisms proposed in the previous(More)
The reaction of CuCl-catalyzed coupling of thiol ester with organostannane has been theoretically investigated using density functional calculations. This reaction takes place with CuCl as a catalyst, giving the product ketone and an organotin sulfide. The relatively low overall activation barrier calculated (26.0 kcal/mol) supports the experimental fact(More)