Sivakumar R Challa

  • Citations Per Year
Learn More
Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst(More)
Catalysts based on single atoms of scarce precious metals can lead to more efficient use through enhanced reactivity and selectivity. However, single atoms on catalyst supports can be mobile and aggregate into nanoparticles when heated at elevated temperatures. High temperatures are detrimental to catalyst performance unless these mobile atoms can be(More)
Pt is an active catalyst for diesel exhaust catalysis but is known to sinter and form large particles under oxidizing conditions. Pd is added to improve the performance of the Pt catalysts. To investigate the role of Pd, we introduced metallic Pt nanoparticles via physical vapor deposition to a sample containing PdO nanoparticles. When the catalyst was aged(More)
An improved, exact analysis of surface Ostwald ripening of a collection of nanoparticles is presented in an effort to redefine the critical radius involved in the kinetic models of ripening. In a collection of supported particles of different sizes, the critical radius is the size of the particle that is in equilibrium with the surrounding adatom(More)
We report on molecular-dynamics simulations of the drag force experienced by a smooth sphere as it approaches a smooth planar surface to test the predictions of classical hydrodynamic theory. We use a simple repulsive Lennard-Jones-like model to represent the fluid interactions, and calculate the total force on the sphere as a function of its radius,(More)
Under electron-beam irradiation, dendritic platinum nanosheets structurally evolve into metastable "holey" nanosheets. Monte Carlo simulations of this structural transformation agree well with electron microscope images detailing the ripening process. The experiments and simulations show that nanoscale holes of a critical size are persistent and give holey(More)
Producing nanostructures with high surface area that are stable is important to accomplish sustained use of catalytic materials in practical settings. Avoiding the processes of ripening and sintering that typically hinder stability has long been recognized as a significant challenge and much research is focused on addressing these issues. In this article,(More)
Supported platinum catalysts are used in the automotive industry for the oxidation of CO, hydrocarbons, and NOx. Dispersed Pt provides active sites for these reactions to occur. During the use of these catalyst, high temperatures will cause Pt to become volatile and sinter, forming large particles which will lead to a loss of catalytic activity. The study(More)
Sintering of nanoparticles (NPs) of Ni supported on MgAl(2)O(4) was monitored in situ using transmission electron microscopy (TEM) during exposure to an equimolar mixture of H(2) and H(2)O at a pressure of 3.6 mbar at 750 °C, conditions relevant to methane steam reforming. The TEM images revealed an increase in the mean particle size due to disappearance of(More)
  • 1