Sitikantha Roy

  • Citations Per Year
Learn More
In hair cells, although mechanotransduction channels have been localized to tips of shorter stereocilia of the mechanically sensitive hair bundle, little is known about how force is transmitted to the channel. Here, we use a biophysical model of the membrane-channel complex to analyze the nature of the gating spring compliance and channel arrangement. We(More)
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active(More)
Cell locomotion is a result of a series of synchronized chemo-mechanical processes. Previous extensive experimental studies have revealed many chemo-mechanical processes that may contribute to cell locomotion. In parallel, theoretical works have been developed to provide deeper insight. To date, however, direct simulations of cell locomotion on a substrate(More)
Semiflexible polymer networks, such as cell cytoskeleton, differ significantly from their flexible counterparts in their deformation energy storage mechanism. As a result, the network elasticity is governed by both enthalpic and entropic variations. In addition, the enthalpic effect shows two distinct regimes of energy storage mechanism, the affine and(More)
Cell locomotion is a result of a series of synchronized chemo-mechanical processes. Crawling-type cell locomotion consists of three steps: protrusion, translocation, and retraction. Previous works have shown that both protrusion and retraction can produce cell movement. For the latter, a cell derives its propulsive force from retraction induced protrusion(More)
  • 1