Sissi de Beer

Learn More
Previous AFM experiments on surface nanobubbles have suggested an anomalously large contact angle theta of the bubbles (typically approximately 160 degrees measured through the water) and a possible size dependence theta(R). Here we determine theta(R) for nanobubbles on smooth, highly oriented pyrolytic graphite (HOPG) with a variety of different(More)
Polymer brushes lead to small friction and wear and thus hold great potential for industrial applications. However, interdigitation of opposing brushes makes them prone to damage. Here we report molecular dynamics simulations revealing that immiscible brush systems can form slick interfaces, in which interdigitation is eliminated and dissipation strongly(More)
Poly(N-isopropyl acrylamide) (PNIPAM) is a stimulus-responsive polymer that can switch in water from an expanded state below the lower critical solution temperature (LCST) of 32 °C to a globular state above the LCST. It was recently shown that, as a consequence of this conformational transition, the interfacial and (tribo-)mechanical properties of polymeric(More)
We use atomic force microscopy to measure the distance-dependent solvation forces and the dissipation across liquid films of octamethylcyclotetrasiloxane (OMCTS) confined between a silicon tip and a highly oriented pyrolytic graphite substrate without active excitation of the cantilever. By analyzing the thermal bending fluctuations, we minimize possible(More)
A critical complication in handling nanoparticles is the formation of large aggregates when particles are dried e.g. when they need to be transferred from one liquid to another. The particles in these aggregates need to disperse into the destined liquid medium, which has been proven difficult due to the relatively large interfacial interaction forces(More)
We present temperature-dependent atomic force microscope (AFM) measurements in force-distance mode of confined 1-dodecanol. Upon approach of the AFM-tip toward the highly oriented pyrolytic graphite (HOPG) surface, the final liquid film--only a few nanometers thin--is squeezed out in discrete layers. We find that both the force needed to squeeze out these(More)
We determine conservative and dissipative tip-sample interaction forces from the amplitude and phase response of acoustically driven atomic force microscope (AFM) cantilevers using a non-polar model fluid (octamethylcyclotetrasiloxane, which displays strong molecular layering) and atomically flat surfaces of highly ordered pyrolytic graphite. Taking into(More)
The synthesis and characterization of electrode-supported poly(ferrocenylsilane) (PFS) films bearing iodopropyl (PFS-I) and undecanesulfonate (PFS-SO3(-)) surface moieties are presented. The redox responsiveness of these PFS films allows for controlled and repeatable switching of the surface energy of the PFS-I and PFS-SO3(-) layers under electrochemical(More)
Stimulus-responsive (SR), solvated polymers can switch between an expanded state and a collapsed state via external stimuli. Using molecular dynamics simulations, I show that such SR polymers can be employed to control the frictional response between two opposing polymer brushes in relative sliding motion. By using a brush composed of SR polymers in contact(More)
Hexagonal boron nitride (hBN) is a 2D material that supports traveling waves composed of material vibrations and light, and is attractive for nanoscale optical devices that function in the infrared. However, the only current method of launching these traveling waves requires the use of a metal nanostructure. Here, we show that the polaritonic waves can be(More)