Learn More
Occupational exposure levels to 1,3-butadiene (BD) are variable but generally below 1 ppm in the European process industry. A preliminary analysis showed that hemoglobin adduct levels of butadiene monoxide (BMO) were increased among the worker groups with higher potential exposure to BD (process work, bomb voiding, repair duties) than among less exposed(More)
Representational difference analysis was used to isolate cDNAs corresponding to 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin)-inducible genes from mouse Hepa-1 cells. One cDNA encoded a novel cytochrome P450. The human homolog was also isolated and later proved to be human CYP2S1. The induction of mouse CYP2S1 mRNA by dioxin represents a primary response and(More)
A hypoxic microenvironment is characteristic of many solid tumors, including pancreatic cancer, the fifth leading cause of cancer death in the United States. Hypoxia causes the stabilization of the HIF-1 (hypoxia-inducible factor-1) transcription factor and the induction of many genes that promote angiogenesis, tumor growth, and metastasis. We performed(More)
Cytochrome P4502S1 (CYP2S1) is expressed at high levels in epithelial tissues and is inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) via the aryl hydrocarbon receptor (AHR). Transcriptional initiation of mouse Cyp2s1 was found to occur at three regions, approximately 198, 102, and 22 nucleotides from the translational initiation codon.(More)
A new member of the cytochrome P450 superfamily, CYP2S1, has recently been identified in human and mouse. In this paper, we review the data currently available for CYP2S1. The human CYP2S1 gene is located in chromosome 19q13.2 within a cluster including CYP2 family members CYP2A6, CYP2A13, CYP2B6, and CYP2F1. These genes also show the highest homology to(More)
CYP2S1 is a recently discovered dioxin-inducible member of the cytochrome P450 superfamily. It has been shown to be involved in the metabolism of some aromatic hydrocarbons as well as retinoic acid, suggesting a role in biotransformation of both exogenous and endogenous compounds. In this study, we used mRNA in situ hybridization and immunohistochemistry to(More)
Glutathione S-transferases (GSTs) are known to take part in detoxification of many potentially carcinogenic compounds. Therefore, polymorphisms of the GST genes have been considered as potentially important modifiers of individual risk of environmentally induced cancers. The association between lack of glutathione S-transferase M1 gene (GSTM1 null genotype)(More)
BACKGROUND Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal(More)
BACKGROUND Humans vary in their ability to metabolize endogenous and exogenous compounds. Glutathione S-transferases (GSTs) and N-acetyltransferases (NATs) are enzymes involved in the detoxification of hazardous agents. The GSTM1 and GSTT1 genes exhibit null (i.e., deletion) polymorphisms; in specific individuals, homozygous deletion (i.e., both copies(More)
AIMS Circadian clock genes are involved in the development of drug-induced behaviors and regulate neurotransmission pathways in addiction. Our aim was to study whether circadian clock gene polymorphisms predispose to alcohol dependence or abuse or other alcohol-related characteristics. METHODS The study sample comprised of 512 individuals having alcohol(More)