Sirirat Kokpol

Learn More
The pathogenic West Nile virus (WNV) and Dengue virus (DV) are growing global threats for which there are no specific treatments. Both viruses possess a two component NS2B/NS3 protease which cleaves viral precursor proteins. Whereas for the WNV protease two crystal structures in complex with an inhibitor have been solved recently, no such information is(More)
Prediction of the binding strength of untested ligands is a central issue in structure-based drug design. In order to rapidly screen large compound databases, simple scoring schemes are often used in target-based virtual screening. The resulting scores often correlate poorly with biological affinities. More rigorous scoring methods, such as MM-PB/SA,(More)
One hundred and seventy-four pyrrolo[3,4-c]carbazole-1,3(2H,6H)-dione derivatives reported as inhibitors of the kinase Wee1 were used for a molecular docking and three-dimensional quantitative structure-activity relationship (3D-QSAR) study. Due to the availability of the three-dimensional structure of the Wee1 kinase a receptor-based alignment strategy was(More)
The origin of the high pathogenicity of an emerging avian influenza H5N1 due to the -RRRKK- insertion at the cleavage loop of the hemagglutinin H5, was studied using the molecular dynamics technique, in comparison with those of the noninserted H5 and H3 bound to the furin (FR) active site. The cleavage loop of the highly pathogenic H5 was found to bind(More)
Based on the belief that structural optimization methods, producing structures more closely to the experimental ones, should give better, i.e. more relevant, steric fields and hence more predictive CoMFA models, comparative molecular field analyses of artemisinin derivatives were performed based on semiempirical AM1 and HF/3-21G optimized geometries. Using(More)
Human immunodeficiency virus (HIV)-1 integrase (IN) is an attractive target for development of acquired immunodeficiency syndrome chemotherapy. In this study, conventional and coupled quantum mechanical and molecular mechanical (QM/MM) molecular dynamics (MD) simulations of HIV-1 IN complexed with 5CITEP (IN-5CITEP) were carried out. In addition to(More)
Integrase (IN), an essential enzyme for HIV-1 replication, has been targeted in antiretroviral drug therapy. The emergence of HIV-1 variants clinically resistant to antiretroviral agents has lead to the development of alternative IN inhibitors. In the present work, binding modes of a high potent IN inhibitor, M522 and M532, within the catalytic binding site(More)
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA), three-dimensional quantitative structure-activity relationship (3D-QSAR) techniques, were applied to a set of 89 HIV-1 integrase (IN) inhibitors (training set=61, test set=28), belonging to 11 structurally different classes. The biological data for(More)
Pyranose 2-oxidase (P2O) from Trametes multicolor contains FAD as cofactor, and forms a tetramer. The protein structure of a mutated P2O, T169S (Thr169 is replaced by Ser), in solution was studied by means of molecular dynamics simulation and analyses of photoinduced electron transfer (ET) from Trp168 to excited isoalloxazine (Iso*), and was compared with(More)
The mechanism of photoinduced electron transfer (PET) from the aromatic amino acids (Trp32, Tyr35 and Trp106) to the excited flavin mononucleotide (FMN) in the wild type (WT) and four single amino acid substitution isomers (E13T, E13Q, W32A and W32Y) of FMN binding protein (FBP) from the Desulfovibrio vulgaris (Miyazaki F) were simultaneously analyzed(More)