Learn More
Accurate simulation of biophysical processes requires vast computing resources. Folding@home is a distributed computing system first released in 2000 to provide such resources needed to simulate protein folding and other biomolecular phenomena. Now operating in the range of 5 PetaFLOPS sustained, it provides more computing power than can typically be(More)
Atomistic simulations of protein folding have the potential to be a great complement to experimental studies, but have been severely limited by the time scales accessible with current computer hardware and algorithms. By employing a worldwide distributed computing network of tens of thousands of PCs and algorithms designed to efficiently utilize this new(More)
The nature of the unfolded state plays a great role in our understanding of proteins. However, accurately studying the unfolded state with computer simulation is difficult, due to its complexity and the great deal of sampling required. Using a supercluster of over 10,000 processors we have performed close to 800 micros of molecular dynamics simulation in(More)
Heavy metals greatly alter plant morphology and architecture, however detailed mechanisms of such changes are not fully explored. Two experiments were conducted to investigate the influence of cadmium (CdCl2 · 2.5H2 O) on some germination, morphological, biochemical and histological characteristics of developing embryonic tissue of maize. In the first(More)
  • 1