Learn More
A key step in network analysis is to partition a complex network into dense modules. Currently, modularity is one of the most popular benefit functions used to partition network modules. However, recent studies suggested that it has an inherent limitation in detecting dense network modules. In this study, we observed that despite the limitation, modularity(More)
Learning network structure underlying data is an important problem in machine learning. This paper presents a novel degree prior to study the inference of scale-free networks, which are widely used to model social and biological networks. In particular, this paper formulates scale-free network inference using Gaussian Graphical model (GGM) regularized by a(More)
Learning the structure of a graphical model is a fundamental problem and it is used extensively to infer the relationship between random variables. In many real world applications, we usually have some prior knowledge about the underlying graph structure, such as degree distribution and block structure. In this paper, we propose a novel generative model for(More)
Gaussian graphical models (GGMs) are widely-used to describe the relationship between random variables. In many real-world applications, GGMs have a block structure in the sense that the variables can be clustered into groups so that inter-group correlation is much weaker than intra-group correlation. We present a novel nonparametric Bayesian generative(More)
Learning the network structure underlying data is an important problem in machine learning. This paper introduces a novel prior to study the inference of scale-free networks, which are widely used to model social and biological networks. The prior not only favors a desirable global node degree distribution, but also takes into consideration the relative(More)
Structured high-cardinality data arises in many domains, and poses a major challenge for both modeling and inference. Graphical models are a popular approach to modeling structured data but they are unsuitable for high-cardinality variables. The count-min (CM) sketch is a popular approach to estimating probabilities in high-cardinality data but it does not(More)