Learn More
MicroRNAs (miRNAs) are an abundant class of small noncoding RNAs that function as negative gene regulators. miRNA deregulation is involved in the initiation and progression of human cancer; however, the underlying mechanism and its contributions to genome-wide transcriptional changes in cancer are still largely unknown. We studied miRNA deregulation in(More)
Aldehyde dehydrogenase isoform 1 (ALDH1) has been proved useful for the identification of cancer stem cells. However, our knowledge of the expression and activity of ALDH1 in common epithelial cancers and their corresponding normal tissues is still largely absent. Therefore, we characterized ALDH1 expression in 24 types of normal tissues and a large(More)
MicroRNAs (miRNA) are approximately 22-nucleotide noncoding RNAs that negatively regulate protein-coding gene expression in a sequence-specific manner via translational inhibition or mRNA degradation. Our recent studies showed that miRNAs exhibit genomic alterations at a high frequency and their expression is remarkably deregulated in ovarian cancer,(More)
A relatively rare aldehyde dehydrogenase 1 (ALDH1)-positive "stem cell-like" subpopulation of tumor cells has the unique ability to initiate and perpetuate tumor growth; moreover, it is highly resistant to chemotherapy and significantly associated with poor clinical outcomes. The development of more effective therapies for cancer requires targeting of this(More)
MiR-34a acts as a candidate tumour suppressor gene, and its expression is reduced in several cancer types. We aimed to study miR-34a expression in breast cancer and its correlation with tumour characteristics and clinical outcome, and regulatory links with other genes. We analysed miR-34a expression in 1,172 breast tumours on TMAs. 25% of the tumours showed(More)
Little is known about the genomic alterations underlying osteosarcoma. We performed a genomewide high-resolution gene copy number analysis of 22 osteosarcoma samples using comparative genomic hybridization on a cDNA microarray that contained cDNA clones of about 13,000 genes. Nineteen of the 22 cases had amplifications that on average spanned more than 1 Mb(More)
Cytotoxic T-lymphocyte (CTL) responses induced by persistent Epstein-Barr virus (EBV) infection in normal B-lymphoid tissues could potentially be directed against EBV-positive malignancies if expression of the relevant viral target proteins is maintained in tumor cells. For malignancies such as nasopharyngeal carcinoma and Hodgkin's disease, this will(More)
MicroRNAs (miRNAs) are small noncoding RNAs that contribute to tumorigenesis by acting as oncogenes or tumor suppressor genes and may be important in the diagnosis, prognosis and treatment of cancer. Many miRNA genes have associated CpG islands, suggesting epigenetic regulation of their expression. Compared with sporadic cancers, the role of miRNAs in(More)
Oncomirs are microRNAs (miRNA) that acts as oncogenes or tumor suppressor genes. Efficient identification of oncomirs remains a challenge. Here we report a novel, clinically guided genetic screening approach for the identification of oncomirs, identifying mir-30d through this strategy. mir-30d regulates tumor cell proliferation, apoptosis, senescence, and(More)
Diagnosis and treatment of epithelial ovarian cancer is challenging due to the poor understanding of the pathogenesis of the disease. Our aim was to investigate epigenetic mechanisms in ovarian tumorigenesis and, especially, whether tumors with different histological subtypes or hereditary background (Lynch syndrome) exhibit differential susceptibility to(More)