Siow-Feng Chong

  • Citations Per Year
Learn More
V accines are the preferred solution for preventing pathogenic infections; however, traditional vaccine strategies have been unsuccessful in immunizing against many important chronic infectious diseases such as HIV and Hepatitis C (HCV). There are now urgent calls for novel vaccine technologies that are safe and able to deliver the vaccine efficiently to(More)
We report the coencapsulation of glutathione reductase and disulfide-linked polymer-oligopeptide conjugates into capsosomes, polymer carrier capsules containing liposomal subcompartments. The architecture of the capsosomes enables a temperature-triggered conversion of oxidized glutathione to its reduced sulfhydryl form by the encapsulated glutathione(More)
Hydrogel nanoparticles (HNP) are an emerging tool of biomedicine with unique materials characteristics, scope, and utility. These hydrated, soft colloidal carriers can penetrate through voids with dimensions narrower than the size of the particle, provide stabilization for fragile biological cargo and allow diffusion and exchange of solutes with external(More)
Fully loaded: Noncovalent anchoring of liposomes into polymer multilayered films with cholesterol-modified polymers allows the preparation of capsosomes-liposome-compartmentalized polymer capsules (see picture). A quantitative enzymatic reaction confirmed the presence of active cargo within the capsosomes and was used to determine the number of(More)
In this work, we characterize physical hydrogels based on poly(vinyl alcohol), PVA, as intelligent biointerfaces for surface-mediated drug delivery. Specifically, we assemble microstructured (μS) surface adhered hydrogels via noncryogenic gelation of PVA, namely polymer coagulation using sodium sulfate (Na(2)SO(4)). We present systematic investigation of(More)
Nanoengineered poly(methacrylic acid) hydrogel capsules (PMA HCs) are promising candidate carriers for biomedical applications, especially in the areas of drug delivery, encapsulated catalysis, and cell mimicry. The assembly, stability, and degradation of these carriers, as well as their use for the encapsulation of therapeutics, have received considerable(More)
The synthesis of new copper(II) bis(thiosemicarbazonato) complexes with an appended pyrene chromophore and their zinc(II) analogues is reported. The new proligands and their copper(II) and zinc(II) complexes were characterised by a combination of NMR, EPR, high performance liquid chromatography, mass spectrometry, electronic spectroscopy and electrochemical(More)
We report on the use of degradable polymer capsules as carriers for the delivery of oligopeptide antigens to professional antigen presenting cells (APCs). To achieve encapsulation, oligopeptide sequences were covalently linked to a negatively charged carrier polymer via biodegradable linkages and the resulting conjugate was then adsorbed onto(More)
Subcompartmentalized hydrogel capsules (SHCs) with selectively degradable carriers and subunits are designed for potential applications in drug delivery and microencapsulated biocatalysis. Thiolated poly(methacrylic acid) and poly(N-vinyl pyrrolidone) are used to assemble 3-microm-diameter carrier capsules and 300-nm-diameter subunits, independently(More)
Standard vaccine technologies based on the induction of antibodies are ineffective in preventing many globally important infectious diseases, including HIV/AIDS. T cell immunity correlates with the control of many chronic infectious diseases, including HIV in humans and SIV in monkeys. However, inducing persistent T cell immunity has proven difficult, in(More)