Siobhan M. Cashman

Learn More
As in other organ systems, gene and drug delivery to ocular tissues such as the retina and cornea is hampered by inefficient penetration of therapeutic molecules across the plasma membrane. We describe the use of a novel peptide for ocular delivery (POD) with protein transduction properties, for delivery of small and large molecules across the plasma(More)
Purpose. Gene therapy for a number of retinal diseases necessitates efficient transduction of photoreceptor cells. Whereas adenovirus (Ad) serotype 5 (Ad5) does not transduce photoreceptors efficiently, previous studies have demonstrated improved photoreceptor transduction by Ad5 pseudotyped with Ad35 (Ad5/F35) or Ad37 (Ad5/F37) fiber or by the deletion of(More)
PURPOSE Choroidal neovascularization (CNV) is the leading cause of blindness in age-related macular degeneration (AMD). Several lines of evidence implicate increased levels of vascular endothelial growth factor (VEGF) in retinal pigment epithelium (RPE) from patients with AMD. Current approaches to attenuate VEGF or its receptors, including the use of small(More)
Recently we described a novel cell penetrating peptide, peptide for ocular delivery (POD) that could deliver small molecules including fluorescent dyes into retinal cells. The objective of the current study was to examine whether biologically relevant macromolecules such as proteins, genetically fused with POD could also be delivered into retinal tissues in(More)
PURPOSE Novel zinc finger nucleases (ZFNs) were designed to target the human rhodopsin gene and induce homologous recombination of a donor DNA fragment. METHODS Three-finger zinc finger nucleases were designed based on previously published guidelines. To assay for ZFN specificity, the authors generated human embryonic retinoblast cell lines stably(More)
Age related macular degeneration (AMD) is the most common cause of blindness amongst the elderly. Approximately 10% of AMD patients suffer from an advanced form of AMD characterized by choroidal neovascularization (CNV). Recent evidence implicates a significant role for complement in the pathogenesis of AMD. Activation of complement terminates in the(More)
PURPOSE Sequence variations in complement proteins are associated with age-related macular degeneration (AMD). The terminal pathway of complement results in the formation of the membrane attack complex (MAC) on the cell surface, resulting in their lysis. MAC has been documented on the retinal pigment epithelium (RPE), choroidal blood vessels, and drusen of(More)
PURPOSE Complement-mediated damage to the retinal pigment epithelium (RPE), Bruch membrane, and choroid has been associated with pathogenesis in age-related macular degeneration (AMD). The terminal step of complement activation involves lysis of cells by the insertion of the membrane attack complex (MAC) in the plasma membrane. The hypothesis that local(More)
Peptide for ocular delivery (POD) is a novel cationic cell-penetrating peptide (CPP) which, when conjugated with polyethylene glycol (PEG-POD), can deliver plasmid DNA to the retinal pigment epithelium (RPE) of adult murine retina. PEG-POD nanoparticles containing an expression cassette for glial cell line-derived neurotrophic factor (PEG-POD~GDNF) were(More)
PURPOSE Activation of complement has been implicated as one of the major causes of age-related macular degeneration (AMD). Evidence is accumulating for a role of complement in other retinal diseases, such as diabetic retinopathy and proliferative vitreoretinopathy. Because of the paucity of animal models that directly investigate the role of complement in(More)